19,939 research outputs found
Effect of lateral displacement of a high-altitude platform on cellular interference and handover
A method for predicting movements in cellular coverage caused by lateral drift of a high-altitude platform (a quasi-stationary platform in the stratosphere) is developed. Cells are produced by spot beams generated by horn-type antennas on the platform. It is shown how the carrier-to-interference ratio (CIR) across these cells varies when the antenna payload is steered to accommodate the lateral movement of the platform. The geometry of the antenna beam footprint on the ground is first developed and then applied to a system of many cochannel beams. Pointing strategies are examined, where the pointing angle is calculated to keep, for example, a center cell or an edge cell in the same nominal position before and after the platform drift, and the CIR distribution is calculated. It is shown that the optimum pointing angle depends on the desired level of CIR across the service area, typically lying between 3 +/- 0.75 degrees for a platform drift of 2'km and corresponding to a cell in the middle ring. It is shown that it is necessary for a significant proportion of users to perform a handover to maintain a given CIR after platform drift. The analysis reveals that there is an optimum pointing angle that minimizes the probability of handover for a particular value of drift and CIR
A pharmacological cocktail for arresting actin dynamics in living cells.
The actin cytoskeleton is regulated by factors that influence polymer assembly, disassembly, and network rearrangement. Drugs that inhibit these events have been used to test the role of actin dynamics in a wide range of cellular processes. Previous methods of arresting actin rearrangements take minutes to act and work well in some contexts, but can lead to significant actin reorganization in cells with rapid actin dynamics, such as neutrophils. In this paper, we report a pharmacological cocktail that not only arrests actin dynamics but also preserves the structure of the existing actin network in neutrophil-like HL-60 cells, human fibrosarcoma HT1080 cells, and mouse NIH 3T3 fibroblast cells. Our cocktail induces an arrest of actin dynamics that initiates within seconds and persists for longer than 10 min, during which time cells maintain their responsivity to external stimuli. With this cocktail, we demonstrate that actin dynamics, and not simply morphological polarity or actin accumulation at the leading edge, are required for the spatial persistence of Rac activation in HL-60 cells. Our drug combination preserves the structure of the existing cytoskeleton while blocking actin assembly, disassembly, and rearrangement, and should prove useful for investigating the role of actin dynamics in a wide range of cellular signaling contexts
Fire Retardancy of Vinyl Ester Nanocomposites: Synergy with Phosphorus-Based Fire Retardants
Vinyl ester (PVE) nanocomposites were prepared using both clay and polyhedral oligosilsesquioxanes (POSS) as the nano-dimensional material. From cone calorimetric data, it was shown that both POSS and clay affect the flammability of the nanocomposites to the same extent. To improve on the flame retardancy, the nanocomposites were combined with phosphorous-containing fire retardants (FRs) and the result compared to the benchmark halogen-containing system. The use of the cone calorimeter to investigate the fire properties of these nanocomposites showed a great reduction in peak heat release rate (PHRR) in the presence of phosphate and slight improvements in average mass loss rate (AMLR) while thermogravimetric analysis showed improvement in char yield in the presence of phosphate. Several different organically modified clays were used and they affected the flammability to different extents. The time that the resin and clay were mixed and the atmosphere in which the reaction was carried out do not have an effect on the flammability and thermal stability of the nanocomposites. The effect of curing temperature on the clay dispersion and flammability was also investigated
Optimizing an array of antennas for cellular coverage from a high altitude platform
In a wireless communications network served by a high altitude platform (HAP) the cochannel interference is a function of the antenna beamwidth, angular separation and. sidelobe level. At the millimeter wave frequencies proposed for HAPs, an array of aperture type antennas on the platform is a practicable solution for serving the cells. We present a method for predicting cochannel interference based on curve-fit approximations for radiation patterns of elliptic beams which illuminate cell edges with optimum power, and a means of estimating optimum beamwidths for each cell of a regular hexagonal layout. The method is then applied to a 121 cell architecture. Where sidelobes are modeled As a flat floor at 40-dB below peak directivity, a cell cluster size of four yields carrier-to-interference ratios (CIRs), which vary from 15 dB at cell edges to 27 dB at cell centers. On adopting a cluster size of seven, these figures increase, respectively, to 19 and 30 dB. On reducing the sidelobe level, the. improvement in CIR can be quantified. The method also readily allows for regions of overlapping channel coverage to be shown
Styrenic Nanocomposites Prepared using a Novel Biphenyl-Containing Clay
Montmorillonite was organically modified using an ammonium salt containing 4-acetylbiphenyl. This clay (BPNC16 clay) was used to prepare polystyrene (PS), acrylonitrile butadiene styrene (ABS) and high impact polystyrene (HIPS) nanocomposites. Polystyrene nanocomposites were prepared both by in situ bulk polymerisation and melt blending processes, while the ABS and HIPS nanocomposites were prepared only by melt blending. X-ray diffraction and transmission electron microscopy were used to confirm nanocomposite formation. Thermogravimetric analysis was used to evaluate thermal stability and the flammability properties were evaluated using cone calorimetry. By thermogravimetry, BPNC16 clay was found to show high thermal stability, and by cone calorimetry, a decrease in both the peak heat release rate and the mass loss rate was observed for the nanocomposites
Improving the system capacity of broadband services using multiple high-altitude platforms
A method of significantly improving the capacity of high-altitude platform (HAP) communications networks operating in the millimeter-wave bands is presented. It is shown how constellations of HAPs can share a common frequency allocation by exploiting the directionality of the user antenna. The system capacity of such constellations is critically affected by the minimum angular separation of the HAPs and the sidelobe level of the user antenna. For typical antenna beamwidths of approximately 5/spl deg/ an inter-HAP spacing of 4 km is sufficient to deliver optimum performance. The aggregate bandwidth efficiency is evaluated, both theoretically using the Shannon equation, and using practical modulation and coding schemes, for multiple HAP configurations delivering either single or multiple cells. For the user antenna beamwidths used, it is shown that capacity increases are commensurate with the increase in the number of platforms, up to 10 HAPs. For increases beyond this the choice of constellation strategy becomes increasingly important
Main Concepts for Two Picture Description Tasks: An Addition to Richardson and Dalton, 2016
Background: Proposition analysis of the discourse of persons with aphasia (PWAs) has a long history, yielding important advancements in our understanding of communication impairments in this population. Recently, discourse measures have been considered primary outcome measures, and multiple calls have been made for improved psychometric properties of discourse measures.
Aims: To advance the use of discourse analysis in PWAs by providing Main Concept Analysis checklists and descriptive statistics for healthy control performance on the analysis for the Cat in the Tree and Refused Umbrella narrative tasks utilized in the AphasiaBank database protocol.
Methods & Procedures: Ninety-two control transcripts, stratified into four age groups (20–39 years; 40–59; 60–79; 80+), were downloaded from the AphasiaBank database. Relevant concepts were identified, and those spoken by at least one-third of the control sample were considered to be a main concept (MC). A multilevel coding system was used to determine the accuracy and completeness of the MCs produced by control speakers.
Outcomes & Results: MC checklists for two discourse tasks are provided. Descriptive statistics are reported and examined to assist readers with evaluation of the normative data.
Conclusions: These checklists provide clinicians and researchers with a tool to reliably assess the discourse of PWAs. They also help address the gap in available psychometric data with which to compare PWAs to healthy controls
The Quantum Speed Limit of Optimal Controlled Phasegates for Trapped Neutral Atoms
We study controlled phasegates for ultracold atoms in an optical potential. A
shaped laser pulse drives transitions between the ground and electronically
excited states where the atoms are subject to a long-range 1/R^3 interaction.
We fully account for this interaction and use optimal control theory to
calculate the pulse shapes. This allows us to determine the minimum pulse
duration, respectively, gate time T that is required to obtain high fidelity.
We accurately analyze the speed limiting factors, and we find the gate time to
be limited either by the interaction strength in the excited state or by the
ground state vibrational motion in the trap. The latter needs to be resolved by
the pulses in order to fully restore the motional state of the atoms at the end
of the gate.Comment: 11 pages, 10 figures, 1 tabl
- …
