36,277 research outputs found
In-flight boundary-layer measurements on a hollow cylinder at a Mach number of 3.0
Skin temperatures, shear forces, surface static pressures, boundary layer pitot pressures, and boundary layer total temperatures were measured on the external surface of a hollow cylinder that was 3.04 meters long and 0.437 meter in diameter and was mounted beneath the fuselage of the YF-12A airplane. The data were obtained at a nominal free stream Mach number of 3.0 (a local Mach number of 2.9) and at wall to recovery temperature ratios of 0.66 to 0.91. The local Reynolds number had a nominal value of 4,300,000 per meter. Heat transfer coefficients and skin friction coefficients were derived from skin temperature time histories and shear force measurements, respectively. In addition, boundary layer velocity profiles were derived from pitot pressure measurements, and a Reynolds analogy factor was obtained from the heat transfer and skin friction measurements. The measured data are compared with several boundary layer prediction methods
Origin of the pseudogap and its influence on superconducting state
When holes move in the background of strong antiferromagnetic correlation,
two effects with different spatial scale emerge, leading to a much reduced
hopping integral with an additional phase factor. An effective Hamiltonian is
then proposed to investigate the underdoped cuprates. We argue that the
pseudogap is the consequence of dressed hole moving in the antiferromagnetic
background and has nothing to do with the superconductivity. The momentum
distributions of the gap are qualitatively consistent with the recent ARPES
measurements both in the pseudogap and superconducting state. Two thermal
qualities are further calculated to justify our model. A two-gap scenario is
concluded to describe the relation between the two gaps.Comment: 7 pages, 5 figure
Stability-mediated epistasis constrains the evolution of an influenza protein.
John Maynard Smith compared protein evolution to the game where one word is converted into another a single letter at a time, with the constraint that all intermediates are words: WORD→WORE→GORE→GONE→GENE. In this analogy, epistasis constrains evolution, with some mutations tolerated only after the occurrence of others. To test whether epistasis similarly constrains actual protein evolution, we created all intermediates along a 39-mutation evolutionary trajectory of influenza nucleoprotein, and also introduced each mutation individually into the parent. Several mutations were deleterious to the parent despite becoming fixed during evolution without negative impact. These mutations were destabilizing, and were preceded or accompanied by stabilizing mutations that alleviated their adverse effects. The constrained mutations occurred at sites enriched in T-cell epitopes, suggesting they promote viral immune escape. Our results paint a coherent portrait of epistasis during nucleoprotein evolution, with stabilizing mutations permitting otherwise inaccessible destabilizing mutations which are sometimes of adaptive value. DOI:http://dx.doi.org/10.7554/eLife.00631.001
Topological Characterization of Non-Abelian Moore-Read State using Density-Matrix Renormailzation Group
The non-Abelian topological order has attracted a lot of attention for its
fundamental importance and exciting prospect of topological quantum
computation. However, explicit demonstration or identification of the
non-Abelian states and the associated statistics in a microscopic model is very
challenging. Here, based on density-matrix renormalization group calculation,
we provide a complete characterization of the universal properties of bosonic
Moore-Read state on Haldane honeycomb lattice model at filling number
for larger systems, including both the edge spectrum and the bulk anyonic
quasiparticle (QP) statistics. We first demonstrate that there are three
degenerating ground states, for each of which there is a definite anyonic flux
threading through the cylinder. We identify the nontrivial countings for the
entanglement spectrum in accordance with the corresponding conformal field
theory. Through inserting the charge flux, it is found that two of the
ground states can be adiabatically connected through a fermionic
charge- QP being pumped from one edge to the other, while the
ground state in Ising anyon sector evolves back to itself. Furthermore, we
calculate the modular matrices and , which contain
all the information for the anyonic QPs. In particular, the extracted quantum
dimensions, fusion rule and topological spins from modular matrices positively
identify the emergence of non-Abelian statistics following the
Chern-Simons theory.Comment: 5 pages; 3 figure
Tuning Kinetic Magnetism of Strongly Correlated Electrons via Staggered Flux
We explore the kinetic magnetism of the infinite- repulsive Hubbard models
at low hole densities on various lattices with nearest-neighbor hopping
integrals modulated by a staggered magnetic flux . Tuning from
0 to makes the ground state (GS) change from a Nagaoka-type ferromagnetic
state to a Haerter-Shastry-type antiferromagnetic state at a critical ,
with both states being of kinetic origin. Intra-plaquette spin correlation, as
well as the GS energy, signals such a quantum criticality. This tunable kinetic
magnetism is generic, and appears in chains, ladders and two-dimensional
lattices with squares or triangles as elementary constituents.Comment: 4 pages, 5 figures, 1 tabl
- …
