50 research outputs found

    Segmentation of epidermal tissue with histopathological damage in images of haematoxylin and eosin stained human skin.

    Get PDF
    Background: Digital image analysis has the potential to address issues surrounding traditional histological techniques including a lack of objectivity and high variability, through the application of quantitative analysis. A key initial step in image analysis is the identification of regions of interest. A widely applied methodology is that of segmentation. This paper proposes the application of image analysis techniques to segment skin tissue with varying degrees of histopathological damage. The segmentation of human tissue is challenging as a consequence of the complexity of the tissue structures and inconsistencies in tissue preparation, hence there is a need for a new robust method with the capability to handle the additional challenges materialising from histopathological damage.Methods: A new algorithm has been developed which combines enhanced colour information, created following a transformation to the L*a*b* colourspace, with general image intensity information. A colour normalisation step is included to enhance the algorithm's robustness to variations in the lighting and staining of the input images. The resulting optimised image is subjected to thresholding and the segmentation is fine-tuned using a combination of morphological processing and object classification rules. The segmentation algorithm was tested on 40 digital images of haematoxylin & eosin (H&E) stained skin biopsies. Accuracy, sensitivity and specificity of the algorithmic procedure were assessed through the comparison of the proposed methodology against manual methods.Results: Experimental results show the proposed fully automated methodology segments the epidermis with a mean specificity of 97.7%, a mean sensitivity of 89.4% and a mean accuracy of 96.5%. When a simple user interaction step is included, the specificity increases to 98.0%, the sensitivity to 91.0% and the accuracy to 96.8%. The algorithm segments effectively for different severities of tissue damage.Conclusions: Epidermal segmentation is a crucial first step in a range of applications including melanoma detection and the assessment of histopathological damage in skin. The proposed methodology is able to segment the epidermis with different levels of histological damage. The basic method framework could be applied to segmentation of other epithelial tissues

    Breast Cancer Characterization Based on Image Classification of Tissue Sections Visualized under Low Magnification

    Get PDF
    Rapid assessment of tissue biopsies is a critical issue in modern histopathology. For breast cancer diagnosis, the shape of the nuclei and the architectural pattern of the tissue are evaluated under high and low magnifications, respectively. In this study, we focus on the development of a pattern classification system for the assessment of breast cancer images captured under low magnification (×10). Sixty-five regions of interest were selected from 60 images of breast cancer tissue sections. Texture analysis provided 30 textural features per image. Three different pattern recognition algorithms were employed (kNN, SVM, and PNN) for classifying the images into three malignancy grades: I–III. The classifiers were validated with leave-one-out (training) and cross-validation (testing) modes. The average discrimination efficiency of the kNN, SVM, and PNN classifiers in the training mode was close to 97%, 95%, and 97%, respectively, whereas in the test mode, the average classification accuracy achieved was 86%, 85%, and 90%, respectively. Assessment of breast cancer tissue sections could be applied in complex large-scale images using textural features and pattern classifiers. The proposed technique provides several benefits, such as speed of analysis and automation, and could potentially replace the laborious task of visual examination.</jats:p

    HealthAgents: distributed multi-agent brain tumor diagnosis and prognosis

    No full text
    We present an agent-based distributed decision support system for the diagnosis and prognosis of brain tumors developed by the HEALTHAGENTS project. HEALTHAGENTS is a European Union funded research project, which aims to enhance the classification of brain tumours using such a decision support system based on intelligent agents to securely connect a network of clinical centres. The HEALTHAGENTS system is implementing novel pattern recognition discrimination methods, in order to analyse in vivo Magnetic Resonance Spectroscopy (MRS) and ex vivo/in vitro High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HR-MAS) and DNA micro-array data. HEALTHAGENTS intends not only to apply forefront agent technology to the biomedical field, but also develop the HEALTHAGENTS network, a globally distributed information and knowledge repository for brain tumour diagnosis and prognosis

    Creating an "electromagnetic interference risk distribution map" in the modern hospital

    No full text
    corecore