483 research outputs found
Topological Black Holes in Quantum Gravity
We derive the black hole solutions with horizons of non-trivial topology and
investigate their properties in the framework of an approach to quantum gravity
being an extension of Bohm's formulation of quantum mechanics. The solutions we
found tend asymptotically (for large ) to topological black holes. We also
analyze the thermodynamics of these space-times.Comment: 4pages, no figures, plain LaTe
Causal sets and conservation laws in tests of Lorentz symmetry
Many of the most important astrophysical tests of Lorentz symmetry also
assume that energy-momentum of the observed particles is exactly conserved. In
the causal set approach to quantum gravity a particular kind of Lorentz
symmetry holds but energy-momentum conservation may be violated. We show that
incorrectly assuming exact conservation can give rise to a spurious signal of
Lorentz symmetry violation for a causal set. However, the size of this spurious
signal is much smaller than can be currently detected and hence astrophysical
Lorentz symmetry tests as currently performed are safe from causal set induced
violations of energy-momentum conservation.Comment: 8 pages, matches version published in PR
Discovery of a Probable Physical Triple Quasar
We report the discovery of the first known probable case of a physical triple
quasar (not a gravitational lens). A previously known double system, QQ
1429-008 at z = 2.076, is shown to contain a third, fainter QSO component at
the same redshift within the measurement errors. Deep optical and IR imaging at
the Keck and VLT telescopes has failed to reveal a plausible lensing galaxy
group or a cluster, and moreover, we are unable to construct any viable lensing
model which could lead to the observed distribution of source positions and
relative intensities of the three QSO image components. Furthermore, there are
hints of differences in broad-band spectral energy distributions of different
components, which are more naturally understood if they are physically distinct
AGN. Therefore, we conclude that this system is most likely a physical triple
quasar, the first such close QSO grouping known at any redshift. The projected
component separations in the restframe are ~ 30 - 50 kpc for the standard
concordance cosmology, typical of interacting galaxy systems. The existence of
this highly unusual system supports the standard picture in which galaxy
interactions lead to the onset of QSO activity.Comment: Submitted to ApJL, LaTeX, 13 pages, 4 eps figures, all include
The Free Particle in Deformed Special Relativity
The phase space of a classical particle in DSR contains de Sitter space as
the space of momenta. We start from the standard relativistic particle in five
dimensions with an extra constraint and reduce it to four dimensional DSR by
imposing appropriate gauge fixing. We analyze some physical properties of the
resulting theories like the equations of motion, the form of Lorentz
transformations and the issue of velocity. We also address the problem of the
origin and interpretation of different bases in DSR.Comment: 15 page
Doubly Special Relativity and de Sitter space
In this paper we recall the construction of Doubly Special Relativity (DSR)
as a theory with energy-momentum space being the four dimensional de Sitter
space. Then the bases of the DSR theory can be understood as different
coordinate systems on this space. We investigate the emerging geometrical
picture of Doubly Special Relativity by presenting the basis independent
features of DSR that include the non-commutative structure of space-time and
the phase space algebra. Next we investigate the relation between our geometric
formulation and the one based on quantum -deformations of the
Poincar\'e algebra. Finally we re-derive the five-dimensional differential
calculus using the geometric method, and use it to write down the deformed
Klein-Gordon equation and to analyze its plane wave solutions.Comment: 26 pages, one formula (67) corrected; some remarks adde
Heavily Obscured Quasar Host Galaxies at z~2 are Disks, Not Major Mergers
We explore the nature of heavily obscured quasar host galaxies at z~2 using
deep Hubble Space Telescope WFC3/IR imaging of 28 Dust Obscured Galaxies (DOGs)
to investigate the role of major mergers in driving black hole growth. The high
levels of obscuration of the quasars selected for this study act as a natural
coronagraph, blocking the quasar light and allowing a clear view of the
underlying host galaxy. The sample of heavily obscured quasars represents a
significant fraction of the cosmic mass accretion on supermassive black holes
as the quasars have inferred bolometric luminosities around the break of the
quasar luminosity function. We find that only a small fraction (4%, at most
11-25%) of the quasar host galaxies are major mergers. Fits to their surface
brightness profiles indicate that 90% of the host galaxies are either disk
dominated, or have a significant disk. This disk-like host morphology, and the
corresponding weakness of bulges, is evidence against major mergers and
suggests that secular processes are the predominant driver of massive black
hole growth. Finally, we suggest that the co-incidence of mergers and AGN
activity is luminosity dependent, with only the most luminous quasars being
triggered mostly by major mergers.Comment: 5 pages, 4 figures, 1 table. To appear as a Letter in MNRA
FIRST-2MASS Red Quasars: Transitional Objects Emerging from the Dust
We present a sample of 120 dust-reddened quasars identified by matching radio
sources detected at 1.4 GHz in the FIRST survey with the near-infrared 2MASS
catalog and color-selecting red sources. Optical and/or near-infrared
spectroscopy provide broad wavelength sampling of their spectral energy
distributions that we use to determine their reddening, characterized by
E(B-V). We demonstrate that the reddening in these quasars is best-described by
SMC-like dust. This sample spans a wide range in redshift and reddening (0.1 <
z < 3, 0.1 < E(B-V) < 1.5), which we use to investigate the possible
correlation of luminosity with reddening. At every redshift, dust-reddened
quasars are intrinsically the most luminous quasars. We interpret this result
in the context of merger-driven quasar/galaxy co-evolution where these reddened
quasars are revealing an emergent phase during which the heavily obscured
quasar is shedding its cocoon of dust prior to becoming a "normal" blue quasar.
When correcting for extinction, we find that, depending on how the parent
population is defined, these red quasars make up < 15-20% of the luminous
quasar population. We estimate, based on the fraction of objects in this phase,
that its duration is 15-20% as long as the unobscured, blue quasar phase.Comment: 21 pages, 17 figures plus a spectral atlas. Accepted for publication
in the Astrophysical Journa
The FIRST-2MASS Red Quasar Survey
Combining radio observations with optical and infrared color selection --
demonstrated in our pilot study to be an efficient selection algorithm for
finding red quasars -- we have obtained optical and infrared spectroscopy for
120 objects in a complete sample of 156 candidates from a sky area of 2716
square degrees. Consistent with our initial results, we find our selection
criteria -- J-K>1.7, R-K>4.0 -- yield a ~50% success rate for discovering
quasars substantially redder than those found in optical surveys. Comparison
with UVX- and optical color-selected samples shows that >~ 10% of the quasars
are missed in a magnitude-limited survey. Simultaneous two-frequency radio
observations for part of the sample indicate that a synchrotron continuum
component is ruled out as a significant contributor to reddening the quasars'
spectra. We go on to estimate extinctions for our objects assuming their red
colors are caused by dust. Continuum fits and Balmer decrements suggest E(B-V)
values ranging from near zero to 2.5 magnitudes. Correcting the K-band
magnitudes for these extinctions, we find that for K <= 14.0, red quasars make
up between 25% and 60% of the underlying quasar population; owing to the
incompleteness of the 2MASS survey at fainter K-band magnitudes, we can only
set a lower limit to the radio-detected red quasar population of >20-30%.Comment: 80 pages (single-column, preprint format) 20 figures, Accepted for
publicated in Ap
Lorentz-covariant deformed algebra with minimal length
The -dimensional two-parameter deformed algebra with minimal length
introduced by Kempf is generalized to a Lorentz-covariant algebra describing a
()-dimensional quantized space-time. For D=3, it includes Snyder algebra
as a special case. The deformed Poincar\'e transformations leaving the algebra
invariant are identified. Uncertainty relations are studied. In the case of D=1
and one nonvanishing parameter, the bound-state energy spectrum and
wavefunctions of the Dirac oscillator are exactly obtained.Comment: 8 pages, no figure, presented at XV International Colloquium on
Integrable Systems and Quantum Symmetries (ISQS-15), Prague, June 15-17, 200
Non-Linear Relativity in Position Space
We propose two methods for obtaining the dual of non-linear relativity as
previously formulated in momentum space. In the first we allow for the (dual)
position space to acquire a non-linear representation of the Lorentz group
independently of the chosen representation in momentum space. This requires a
non-linear definition for the invariant contraction between momentum and
position spaces. The second approach, instead, respects the linearity of the
invariant contraction. This fully fixes the dual of momentum space and dictates
a set of energy-dependent space-time Lorentz transformations. We discuss a
variety of physical implications that would distinguish these two strategies.
We also show how they point to two rather distinct formulations of theories of
gravity with an invariant energy and/or length scale.Comment: 7 pages, revised versio
- …
