8,696 research outputs found

    A nonparametric Bayesian approach to the rare type match problem

    Full text link
    The "rare type match problem" is the situation in which the suspect's DNA profile, matching the DNA profile of the crime stain, is not in the database of reference. The evaluation of this match in the light of the two competing hypotheses (the crime stain has been left by the suspect or by another person) is based on the calculation of the likelihood ratio and depends on the population proportions of the DNA profiles, that are unknown. We propose a Bayesian nonparametric method that uses a two-parameter Poisson Dirichlet distribution as a prior over the ranked population proportions, and discards the information about the names of the different DNA profiles. This fits very well the data coming from European Y-STR DNA profiles, and the calculation of the likelihood ratio becomes quite simple thanks to a justified Empirical Bayes approach.Comment: arXiv admin note: text overlap with arXiv:1506.0844

    Planck-scale modifications to Electrodynamics characterized by a space-like symmetry-breaking vector

    Full text link
    In the study of Planck-scale ("quantum-gravity induced") violations of Lorentz symmetry, an important role was played by the deformed-electrodynamics model introduced by Myers and Pospelov. Its reliance on conventional effective quantum field theory, and its description of symmetry-violation effects simply in terms of a four-vector with nonzero component only in the time-direction, rendered it an ideal target for experimentalists and a natural concept-testing ground for many theorists. At this point however the experimental limits on the single Myers-Pospelov parameter, after improving steadily over these past few years, are "super-Planckian", {\it i.e.} they take the model out of actual interest from a conventional quantum-gravity perspective. In light of this we here argue that it may be appropriate to move on to the next level of complexity, still with vectorial symmetry violation but adopting a generic four-vector. We also offer a preliminary characterization of the phenomenology of this more general framework, sufficient to expose a rather significant increase in complexity with respect to the original Myers-Pospelov setup. Most of these novel features are linked to the presence of spatial anisotropy, which is particularly pronounced when the symmetry-breaking vector is space-like, and they are such that they reduce the bound-setting power of certain types of observations in astrophysics

    Flux-ratio anomalies from discs and other baryonic structures in the Illustris simulation

    Get PDF
    The flux ratios in the multiple images of gravitationally lensed quasars can provide evidence for dark matter substructure in the halo of the lensing galaxy if the flux ratios differ from those predicted by a smooth model of the lensing galaxy mass distribution. However, it is also possible that baryonic structures in the lensing galaxy, such as edge-on discs, can produce flux-ratio anomalies. In this work, we present the first statistical analysis of flux-ratio anomalies due to baryons from a numerical simulation perspective. We select galaxies with various morphological types in the Illustris simulation and ray-trace through the simulated halos, which include baryons in the main lensing galaxies but exclude any substructures, in order to explore the pure baryonic effects. Our ray-tracing results show that the baryonic components can be a major contribution to the flux-ratio anomalies in lensed quasars and that edge-on disc lenses induce the strongest anomalies. We find that the baryonic components increase the probability of finding high flux-ratio anomalies in the early-type lenses by about 8% and by about 10 - 20% in the disc lenses. The baryonic effects also induce astrometric anomalies in 13% of the mock lenses. Our results indicate that the morphology of the lens galaxy becomes important in the analysis of flux-ratio anomalies when considering the effect of baryons, and that the presence of baryons may also partially explain the discrepancy between the observed (high) anomaly frequency and what is expected due to the presence of subhalos as predicted by the CDM simulations.Comment: 16 pages, 11 figures, accepted by MNRA
    corecore