26 research outputs found
Machine Learning for QoS Prediction in Vehicular Communication: Challenges and Solution Approaches
As cellular networks evolve towards the 6th generation, machine learning is
seen as a key enabling technology to improve the capabilities of the network.
Machine learning provides a methodology for predictive systems, which can make
networks become proactive. This proactive behavior of the network can be
leveraged to sustain, for example, a specific quality of service requirement.
With predictive quality of service, a wide variety of new use cases, both
safety- and entertainment-related, are emerging, especially in the automotive
sector. Therefore, in this work, we consider maximum throughput prediction
enhancing, for example, streaming or high-definition mapping applications. We
discuss the entire machine learning workflow highlighting less regarded aspects
such as the detailed sampling procedures, the in-depth analysis of the dataset
characteristics, the effects of splits in the provided results, and the data
availability. Reliable machine learning models need to face a lot of challenges
during their lifecycle. We highlight how confidence can be built on machine
learning technologies by better understanding the underlying characteristics of
the collected data. We discuss feature engineering and the effects of different
splits for the training processes, showcasing that random splits might
overestimate performance by more than twofold. Moreover, we investigate diverse
sets of input features, where network information proved to be most effective,
cutting the error by half. Part of our contribution is the validation of
multiple machine learning models within diverse scenarios. We also use
explainable AI to show that machine learning can learn underlying principles of
wireless networks without being explicitly programmed. Our data is collected
from a deployed network that was under full control of the measurement team and
covered different vehicular scenarios and radio environments.Comment: 18 pages, 12 Figures. Accepted on IEEE Acces
Towards an AI-enabled Connected Industry: AGV Communication and Sensor Measurement Datasets
This paper presents two wireless measurement campaigns in industrial
testbeds: industrial Vehicle-to-vehicle (iV2V) and industrial
Vehicle-to-infrastructure plus Sensor (iV2I+), together with detailed
information about the two captured datasets. iV2V covers sidelink communication
scenarios between Automated Guided Vehicles (AGVs), while iV2I+ is conducted at
an industrial setting where an autonomous cleaning robot is connected to a
private cellular network. The combination of different communication
technologies within a common measurement methodology provides insights that can
be exploited by Machine Learning (ML) for tasks such as fingerprinting,
line-of-sight detection, prediction of quality of service or link selection.
Moreover, the datasets are publicly available, labelled and prefiltered for
fast on-boarding and applicability.Comment: 7 pages, 3 figures. Submitted to a magazine. Datasets available at
https://ieee-dataport.org/open-access/ai4mobile-industrial-wireless-datasets-iv2v-and-iv2
Berlin V2X: A Machine Learning Dataset from Multiple Vehicles and Radio Access Technologies
The evolution of wireless communications into 6G and beyond is expected to
rely on new machine learning (ML)-based capabilities. These can enable
proactive decisions and actions from wireless-network components to sustain
quality-of-service (QoS) and user experience. Moreover, new use cases in the
area of vehicular and industrial communications will emerge. Specifically in
the area of vehicle communication, vehicle-to-everything (V2X) schemes will
benefit strongly from such advances. With this in mind, we have conducted a
detailed measurement campaign that paves the way to a plethora of diverse
ML-based studies. The resulting datasets offer GPS-located wireless
measurements across diverse urban environments for both cellular (with two
different operators) and sidelink radio access technologies, thus enabling a
variety of different studies towards V2X. The datasets are labeled and sampled
with a high time resolution. Furthermore, we make the data publicly available
with all the necessary information to support the onboarding of new
researchers. We provide an initial analysis of the data showing some of the
challenges that ML needs to overcome and the features that ML can leverage, as
well as some hints at potential research studies.Comment: 5 pages, 6 figures. Accepted for presentation at IEEE conference
VTC2023-Spring. Available dataset at
https://ieee-dataport.org/open-access/berlin-v2
Squalene Synthase Deficiency: Clinical, Biochemical, and Molecular Characterization of a Defect in Cholesterol Biosynthesis
Item does not contain fulltex
Target-Site Investigation for the Plasma Prolactin Response: Mechanism-Based Pharmacokinetic-Pharmacodynamic Analysis of Risperidone and Paliperidone in the Rat
To understand the drivers in the biological system response to dopamine D2 receptor antagonists, a mechanistic semiphysiologically based (PB) pharmacokinetic-pharmacodymanic (PKPD) model was developed to describe prolactin responses to risperidone (RIS) and its active metabolite paliperidone (PAL). We performed a microdialysis study in rats to obtain detailed plasma, brain extracellular fluid (ECF), and cerebrospinal fluid (CSF) concentrations of PAL and RIS. To assess the impact of P-glycoprotein (P-gp) functioning on brain distribution, we performed experiments in the absence or presence of the P-gp inhibitor tariquidar (TQD). PK and PKPD modeling was performed by nonlinear mixed-effect modeling. Plasma, brain ECF, and CSF PK values of RIS and PAL were well described by a 12-compartmental semi-PBPK model, including metabolic conversion of RIS to PAL. P-gp efflux functionality was identified on brain ECF for RIS and PAL and on CSF only for PAL. In the PKPD analysis, the plasma drug concentrations were more relevant than brain ECF or CSF concentrations to explain the prolactin response; the estimated EC50 was in accordance with reports in the literature for both RIS and PAL. We conclude that for RIS and PAL, the plasma concentrations better explain the prolactin response than do brain ECF or CSF concentrations. This research shows that PKPD modeling is of high value to delineate the target site of drugs.Pharmacolog
