7,981 research outputs found

    Low-Altitude Reconnection Inflow-Outflow Observations during a 2010 November 3 Solar Eruption

    Get PDF
    For a solar flare occurring on 2010 November 3, we present observations using several SDO/AIA extreme-ultraviolet (EUV) passbands of an erupting flux rope followed by inflows sweeping into a current sheet region. The inflows are soon followed by outflows appearing to originate from near the termination point of the inflowing motion - an observation in line with standard magnetic reconnection models. We measure average inflow plane-of-sky speeds to range from ~150-690 km/s with the initial, high-temperature inflows being the fastest. Using the inflow speeds and a range of Alfven speeds, we estimate the Alfvenic Mach number which appears to decrease with time. We also provide inflow and outflow times with respect to RHESSI count rates and find that the fast, high-temperature inflows occur simultaneously with a peak in the RHESSI thermal lightcurve. Five candidate inflow-outflow pairs are identified with no more than a minute delay between detections. The inflow speeds of these pairs are measured to be 10^2 km/s with outflow speeds ranging from 10^2-10^3 km/s - indicating acceleration during the reconnection process. The fastest of these outflows are in the form of apparently traveling density enhancements along the legs of the loops rather than the loop apexes themselves. These flows could either be accelerated plasma, shocks, or waves prompted by reconnection. The measurements presented here show an order of magnitude difference between the retraction speeds of the loops and the speed of the density enhancements within the loops - presumably exiting the reconnection site.Comment: 31 pages, 13 figures, 1 table, Accepted to ApJ (expected publication ~July 2012

    Apparent Violation of the Wiedemann-Franz law near a magnetic field tuned metal-antiferromagnetic quantum critical point

    Get PDF
    The temperature dependence of the interlayer electrical and thermal resistivity in a layered metal are calculated for Fermi liquid quasiparticles which are scattered inelastically by two-dimensional antiferromagnetic spin fluctuations. Both resistivities have a linear temperature dependence over a broad temperature range. Extrapolations to zero temperature made from this linear-TT range give values that appear to violate the Wiedemann-Franz law. However, below a low-temperature scale, which becomes small close to the critical point, a recovery of this law occurs. Our results describe recent measurements on CeCoIn5_5 near a magnetic field-induced quantum phase transition. Hence, the experiments do not necessarily imply a non-Fermi liquid ground state.Comment: 4 pages, 2 figures; accepted to Phys. Rev. Let

    Mechanistic Modelling of Grassland Energy Balance

    Get PDF

    Observations of the structure and evolution of solar flares with a soft X-ray telescope

    Get PDF
    Soft X ray flare events were observed with the S-056 X-ray telescope that was part of the ATM complement of instruments aboard SKYLAB. Analyses of these data are reported. The observations are summarized and a detailed discussion of the X-ray flare structures is presented. The data indicated that soft X-ray emitted by a flare come primarily from an intense well-defined core surrounded by a region of fainter, more diffuse emission. An analysis of flare evolution indicates evidence for preliminary heating and energy release prior to the main phase of the flare. Core features are found to be remarkably stable and retain their shape throughout a flare. Most changes in the overall configuration seem to be result of the appearance, disappearance or change in brightness of individual features, rather than the restructuring or reorientation of these features. Brief comparisons with several theories are presented

    Temperature dependence of the interlayer magnetoresistance of quasi-one-dimensional Fermi liquids at the magic angles

    Full text link
    The interlayer magnetoresistance of a quasi-one-dimensional Fermi liquid is considered for the case of a magnetic field that is rotated within the plane perpendicular to the most-conducting direction. Within semi-classical transport theory dips in the magnetoresistance occur at integer amgic angles only when the electronic dispersion parallel to the chains is nonlinear. If the field direction is fixed at one of the magic angles and the temperature is varied the resulting variation of the scattering rate can lead to a non-monotonic variation of the interlayer magnetoresistance with temperature. Although the model considered here gives a good description of some of the properties of the Bechgaard salts, (TMTSF)2PF6 for pressures less than 8kbar and (TMTSF)2ClO4 it gives a poor description of their properties when the field is parallel to the layers and of the intralayer transport.Comment: 10pages, RevTeX + epsf, 3 figure

    Quantum entanglement between a nonlinear nanomechanical resonator and a microwave field

    Full text link
    We consider a theoretical model for a nonlinear nanomechanical resonator coupled to a superconducting microwave resonator. The nanomechanical resonator is driven parametrically at twice its resonance frequency, while the superconducting microwave resonator is driven with two tones that differ in frequency by an amount equal to the parametric driving frequency. We show that the semi-classical approximation of this system has an interesting fixed point bifurcation structure. In the semi-classical dynamics a transition from stable fixed points to limit cycles is observed as one moves from positive to negative detuning. We show that signatures of this bifurcation structure are also present in the full dissipative quantum system and further show that it leads to mixed state entanglement between the nanomechanical resonator and the microwave cavity in the dissipative quantum system that is a maximum close to the semi-classical bifurcation. Quantum signatures of the semi-classical limit-cycles are presented.Comment: 36 pages, 18 figure

    Fermi surface of underdoped cuprate superconductors from interlayer magnetoresistance: closed pockets versus open arcs

    Get PDF
    An outstanding question about the underdoped cuprates concerns the true nature of their Fermi surface which appears as a set of disconnected arcs. Theoretical models have proposed two distinct possibilities: (1) each arc is the observable part of a partially hidden closed pocket and (2) each arc is open, truncated at its apparent ends. We show that measurements of the variation in the interlayer resistance with the direction of a magnetic field parallel to the layers can qualitatively distinguish closed pockets from open arcs. This is possible because the field can be oriented such that all electrons on arcs encounter a large Lorentz force and resulting magnetoresistance whereas some electrons on pockets escape the effect by moving parallel to the field. © 2010 The American Physical Society

    Aberrant CBFA2T3B gene promoter methylation in breast tumors

    Get PDF
    BACKGROUND: The CBFA2T3 locus located on the human chromosome region 16q24.3 is frequently deleted in breast tumors. CBFA2T3 gene expression levels are aberrant in breast tumor cell lines and the CBFA2T3B isoform is a potential tumor suppressor gene. In the absence of identified mutations to further support a role for this gene in tumorigenesis, we explored whether the CBFA2T3B promoter region is aberrantly methylated and whether this correlates with expression. RESULTS: Aberrant hypo and hypermethylation of the CBFA2T3B promoter was detected in breast tumor cell lines and primary breast tumor samples relative to methylation index interquartile ranges in normal breast counterpart and normal whole blood samples. A statistically significant inverse correlation between aberrant CBFA2T3B promoter methylation and gene expression was established. CONCLUSION: CBFA2T3B is a potential breast tumor suppressor gene affected by aberrant promoter methylation and gene expression. The methylation levels were quantitated using a second-round real-time methylation-specific PCR assay. The detection of both hypo and hypermethylation is a technicality regarding the methylation methodology.Anthony J Bais, Alison E Gardner, Olivia LD McKenzie, David F Callen, Grant R Sutherland, and Gabriel Kremmidioti
    • …
    corecore