6,713 research outputs found

    Wireless recording of the calls of Rousettus aegyptiacus and their reproduction using electrostatic transducers

    Get PDF
    Bats are capable of imaging their surroundings in great detail using echolocation. To apply similar methods to human engineering systems requires the capability to measure and recreate the signals used, and to understand the processing applied to returning echoes. In this work, the emitted and reflected echolocation signals of Rousettus aegyptiacus are recorded while the bat is in flight, using a wireless sensor mounted on the bat. The sensor is designed to replicate the acoustic gain control which bats are known to use, applying a gain to returning echoes that is dependent on the incurred time delay. Employing this technique allows emitted and reflected echolocation calls, which have a wide dynamic range, to be recorded. The recorded echoes demonstrate the complexity of environment reconstruction using echolocation. The sensor is also used to make accurate recordings of the emitted calls, and these calls are recreated in the laboratory using custom-built wideband electrostatic transducers, allied with a spectral equalization technique. This technique is further demonstrated by recreating multi-harmonic bioinspired FM chirps. The ability to record and accurately synthesize echolocation calls enables the exploitation of biological signals in human engineering systems for sonar, materials characterization and imaging

    A Study of Activated Processes in Soft Sphere Glass

    Full text link
    On the basis of long simulations of a binary mixture of soft spheres just below the glass transition, we make an exploratory study of the activated processes that contribute to the dynamics. We concentrate on statistical measures of the size of the activated processes.Comment: 17 pages, 9 postscript figures with epsf, uses harvmac.te

    Initial geomagnetic field model from MAGSAT

    Get PDF
    Magsat data from magnetically quiet days were used to derive a thirteenth degree and order spherical harmonic geomagnetic field model, MGST(3/80). The model utilized both scalar and vector data and fit that data with standard deviations of 8, 52, 55 and 97 nT for the scalar magnitude, B sub r, B sub theta and B sub phi respectively. When compared with earlier models, the Earth's dipole moment continues to decrease at a rate of about 26 nT/year. Evaluation of earlier models with Magsat data shows that the scalar field at the Magsat epoch is best predicted by the POGO(2/72) model but that the AWC/75 and IGS/75 are better for predicting vector fields

    Electrostatics in wind-blown sand

    Full text link
    Wind-blown sand, or "saltation," is an important geological process, and the primary source of atmospheric dust aerosols. Significant discrepancies exist between classical saltation theory and measurements. We show here that these discrepancies can be resolved by the inclusion of sand electrification in a physically based saltation model. Indeed, we find that electric forces enhance the concentration of saltating particles and cause them to travel closer to the surface, in agreement with measurements. Our results thus indicate that sand electrification plays an important role in saltation.Comment: 4 journal pages, 5 figures, and supplementary material. Article is in press at PR

    Quantum orbits of R-matrix type

    Get PDF
    Given a simple Lie algebra \gggg, we consider the orbits in \gggg^* which are of R-matrix type, i.e., which possess a Poisson pencil generated by the Kirillov-Kostant-Souriau bracket and the so-called R-matrix bracket. We call an algebra quantizing the latter bracket a quantum orbit of R-matrix type. We describe some orbits of this type explicitly and we construct a quantization of the whole Poisson pencil on these orbits in a similar way. The notions of q-deformed Lie brackets, braided coadjoint vector fields and tangent vector fields are discussed as well.Comment: 18 pp., Late

    Long‐Wavelength Sinuosity of Linear Dunes on Earth and Titan and the Effect of Underlying Topography

    Get PDF
    AbstractOn both Earth and Titan, some linear dunefields are characterized by curvilinear patterning atypical of the regularity and straightness of typical longitudinal dunefields. We use remotely sensed imagery and an automated dune crestline detection algorithm to analyze the controls on spatial patterning. Here it is shown that topography can influence the patterning, as dune alignments bend to deflect downslope under the influence of gravity. The effect is pronounced in a terrestrial dunefield (the Great Sandy desert, Australia) where substantial topography underlies, but is absent where the dunefield is underlain by subdued relief (southwestern Kalahari). This knowledge allows the inference of subtle topographic changes underlying dunefields from dunefield patterning, where other sources of elevation data may be absent. This methodology is explored using the Belet Sand Sea of Titan, where likely areas of topographic change at resolutions finer than those currently available from radar altimetry are inferred.</jats:p

    Ergodic sampling of the topological charge using the density of states

    Get PDF
    In lattice calculations, the approach to the continuum limit is hindered by the severe freezing of the topological charge, which prevents ergodic sampling in configuration space. In order to significantly reduce the autocorrelation time of the topological charge, we develop a density of states approach with a smooth constraint and use it to study SU(3) pure Yang Mills gauge theory near the continuum limit. Our algorithm relies on simulated tempering across a range of couplings, which guarantees the decorrelation of the topological charge and ergodic sampling of topological sectors. Particular emphasis is placed on testing the accuracy, efficiency and scaling properties of the method. In their most conservative interpretation, our results provide firm evidence of a sizeable reduction of the exponent z related to the growth of the autocorrelation time as a function of the inverse lattice spacing

    Analysis of United Kingdom Off-Highway Construction Machinery Market and Its Consumers Using New-Sales Data

    Get PDF
    The off-highway construction machinery market and its consumers have attracted minimal previous research. This study addresses that void by analyzing annual United Kingdom (UK) (volume/portfolio) new-sales data for the 10 most popular products within that market, 1990–2010 inclusive. Graphical, descriptive statistical, Pearson-correlational, autocorrelational, and elementary modeling are employed to identify contrasts in sales regarding (1) high- and low-volume items; (2) growth trends and significant recessionary effects on volumes; (3) a demand change point circa 1997, since when annual product portfolio has changed little; and (4) product associations in consumer demand. Significant association is demonstrated between demand and construction output, especially with the value of new housing. Subsequently, consumption of wheeled loaders is modeled using construction volume, and demand for mini and crawler excavators is modeled using new-housing data. Time series trends for these machinery types are presented and forecast through 2015. The primary contribution of this study is a deeper understanding of the UK new-machinery market and the predilections of its consumers over the last two decades (to present)

    Photodetector based on Vernier-enhanced Fabry-Perot interferometers with a photo-thermal coating

    Get PDF
    We present a new type of fiber-coupled photodetector with a thermal-based optical sensor head, which enables it to operate even in the presence of strong electro-magnetic interference and in electrically sensitive environments. The optical sensor head consists of three cascaded Fabry-Perot interferometers. The end-face surface is coated with copper-oxide micro-particles embedded in hydrogel, which is a new photo-thermal coating that can be readily coated on many different surfaces. Under irradiation, photons are absorbed by the photo-thermal coating, and are converted into heat, changing the optical path length of the probing light and induces a resonant wavelength shift. For white-light irradiation, the photodetector exhibits a power sensitivity of 760 pm/mW, a power detection limit of 16.4 μW (i.e. specific detectivity of 2.2 × 105 cm.√Hz/W), and an optical damage threshold of ~100 mW or ~800 mW/cm2. The response and recovery times are 3.0 s (~90% of change within 100 ms) and 16.0 s respectively.George Y. Chen, Xuan Wu, Xiaokong Liu, David G. Lancaster, Tanya M. Monro and Haolan X

    Weighted Mean Field Theory for the Random Field Ising Model

    Full text link
    We consider the mean field theory of the Random Field Ising Model obtained by weighing the many solutions of the mean field equations with Boltzmann-like factors. These solutions are found numerically in three dimensions and we observe critical behavior arising from the weighted sum. The resulting exponents are calculated.Comment: 15 pages of tex using harvmac. 8 postscript figures (fig3.ps is large) in a separate .uu fil
    corecore