14,316 research outputs found
Optimal Axes of Siberian Snakes for Polarized Proton Acceleration
Accelerating polarized proton beams and storing them for many turns can lead
to a loss of polarization when accelerating through energies where a spin
rotation frequency is in resonance with orbit oscillation frequencies.
First-order resonance effects can be avoided by installing Siberian Snakes in
the ring, devices which rotate the spin by 180 degrees around the snake axis
while not changing the beam's orbit significantly. For large rings, several
Siberian Snakes are required.
Here a criterion will be derived that allows to find an optimal choice of the
snake axes. Rings with super-period four are analyzed in detail, and the HERA
proton ring is used as an example for approximate four-fold symmetry. The
proposed arrangement of Siberian Snakes matches their effects so that all
spin-orbit coupling integrals vanish at all energies and therefore there is no
first-order spin-orbit coupling at all for this choice, which I call snakes
matching. It will be shown that in general at least eight Siberian Snakes are
needed and that there are exactly four possibilities to arrange their axes.
When the betatron phase advance between snakes is chosen suitably, four
Siberian Snakes can be sufficient.
To show that favorable choice of snakes have been found, polarized protons
are tracked for part of HERA-p's acceleration cycle which shows that
polarization is preserved best for the here proposed arrangement of Siberian
Snakes.Comment: 14 pages, 16 figure
Approximate Newton Methods for Policy Search in Markov Decision Processes
Approximate Newton methods are standard optimization tools which aim to maintain the benefits of Newton's method, such as a fast rate of convergence, while alleviating its drawbacks, such as computationally expensive calculation or estimation of the inverse Hessian. In this work we investigate approximate Newton methods for policy optimization in Markov decision processes (MDPs). We first analyse the structure of the Hessian of the total expected reward, which is a standard objective function for MDPs. We show that, like the gradient, the Hessian exhibits useful structure in the context of MDPs and we use this analysis to motivate two Gauss-Newton methods for MDPs. Like the Gauss- Newton method for non-linear least squares, these methods drop certain terms in the Hessian. The approximate Hessians possess desirable properties, such as negative definiteness, and we demonstrate several important performance guarantees including guaranteed ascent directions, invariance to affine transformation of the parameter space and convergence guarantees. We finally provide a unifying perspective of key policy search algorithms, demonstrating that our second Gauss- Newton algorithm is closely related to both the EM-algorithm and natural gradient ascent applied to MDPs, but performs significantly better in practice on a range of challenging domains
Strength of Higher-Order Spin-Orbit Resonances
When polarized particles are accelerated in a synchrotron, the spin
precession can be periodically driven by Fourier components of the
electromagnetic fields through which the particles travel. This leads to
resonant perturbations when the spin-precession frequency is close to a linear
combination of the orbital frequencies. When such resonance conditions are
crossed, partial depolarization or spin flip can occur. The amount of
polarization that survives after resonance crossing is a function of the
resonance strength and the crossing speed. This function is commonly called the
Froissart-Stora formula. It is very useful for predicting the amount of
polarization after an acceleration cycle of a synchrotron or for computing the
required speed of the acceleration cycle to maintain a required amount of
polarization. However, the resonance strength could in general only be computed
for first-order resonances and for synchrotron sidebands. When Siberian Snakes
adjust the spin tune to be 1/2, as is required for high energy accelerators,
first-order resonances do not appear and higher-order resonances become
dominant. Here we will introduce the strength of a higher-order spin-orbit
resonance, and also present an efficient method of computing it. Several
tracking examples will show that the so computed resonance strength can indeed
be used in the Froissart-Stora formula. HERA-p is used for these examples which
demonstrate that our results are very relevant for existing accelerators.Comment: 10 pages, 6 figure
Survival Probabilities of History-Dependent Random Walks
We analyze the dynamics of random walks with long-term memory (binary chains
with long-range correlations) in the presence of an absorbing boundary. An
analytically solvable model is presented, in which a dynamical phase-transition
occurs when the correlation strength parameter \mu reaches a critical value
\mu_c. For strong positive correlations, \mu > \mu_c, the survival probability
is asymptotically finite, whereas for \mu < \mu_c it decays as a power-law in
time (chain length).Comment: 3 pages, 2 figure
Gauge Theories with Cayley-Klein and Gauge Groups
Gauge theories with the orthogonal Cayley-Klein gauge groups and
are regarded. For nilpotent values of the contraction
parameters these groups are isomorphic to the non-semisimple Euclid,
Newton, Galilei groups and corresponding matter spaces are fiber spaces with
degenerate metrics. It is shown that the contracted gauge field theories
describe the same set of fields and particle mass as gauge
theories, if Lagrangians in the base and in the fibers all are taken into
account. Such theories based on non-semisimple contracted group provide more
simple field interactions as compared with the initial ones.Comment: 14 pages, 5 figure
Report on a collecting trip of the British Myriapod Group to Hungary in 1994
During a collecting trip participated jointly by the members of the British Myriapod Group and by Hungarian
experts in 1994, 34 species of millipedes, 14 of centipedes, 8 of woodlice and 73 of spiders were recorded from
Hungary. Two records of the millipede species Boreoiulus tenuis (Bigler, 1913) and Styrioiulus styricus (Verhoeff,
1896) were new to the fauna of Hungary
On the finite-size behavior of systems with asymptotically large critical shift
Exact results of the finite-size behavior of the susceptibility in
three-dimensional mean spherical model films under Dirichlet-Dirichlet,
Dirichlet-Neumann and Neumann-Neumann boundary conditions are presented. The
corresponding scaling functions are explicitly derived and their asymptotics
close to, above and below the bulk critical temperature are obtained. The
results can be incorporated in the framework of the finite-size scaling theory
where the exponent characterizing the shift of the finite-size
critical temperature with respect to is smaller than , with
being the critical exponent of the bulk correlation length.Comment: 24 pages, late
- …
