497 research outputs found

    Instability and Degeneracy in the BMN Correspondence

    Full text link
    Non-degenerate perturbation theory, which was used to calculate the scale dimension of operators on the gauge theory side of the correspondence, breaks down when effects of triple trace operators are included. We interpret this as an instability of excited single-string states in the dual string theory for decay into the continuum of degenerate 3-string states. We apply time-dependent perturbation theory to calculate the decay widths from gauge theory. These widths are new gauge theory data which can be compared with future calculations in light cone string field theory.Comment: 23 pages, no figure

    Predictions for PP-wave string amplitudes from perturbative SYM

    Get PDF
    The role of general two-impurity multi-trace operators in the BMN correspondence is explored. Surprisingly, the anomalous dimensions of all two-impurity multi-trace BMN operators to order g_2^2\lambda' are completely determined in terms of single-trace anomalous dimensions. This is due to suppression of connected field theory diagrams in the BMN limit and this fact has important implications for some string theory processes on the PP-wave background. We also make gauge theory predictions for the matrix elements of the light-cone string field theory Hamiltonian in the two string-two string and one string-three string sectors.Comment: 46 pages, 12 figures. V3:typos correcte

    Holography and Thermodynamics of 5D Dilaton-gravity

    Full text link
    The asymptotically-logarithmically-AdS black-hole solutions of 5D dilaton gravity with a monotonic dilaton potential are analyzed in detail. Such theories are holographically very close to pure Yang-Mills theory in four dimensions. The existence and uniqueness of black-hole solutions is shown. It is also shown that a Hawking-Page transition exists at finite temperature if and only if the potential corresponds to a confining theory. The physics of the transition matches in detail with that of deconfinement of the Yang-Mills theory. The high-temperature phase asymptotes to a free gluon gas at high temperature matching the expected behavior from asymptotic freedom. The thermal gluon condensate is calculated and shown to be crucial for the existence of a non-trivial deconfining transition. The condensate of the topological charge is shown to vanish in the deconfined phase.Comment: LaTeX, 61 pages (main body) + 58 pages (appendix), 25 eps figures. Revised version, published in JHEP. Two equations added in Section 7.4; typos corrected; references adde

    Strings on conifolds from strong coupling dynamics: quantitative results

    Full text link
    Three quantitative features of string theory on AdS_5 x X_5, for any (quasi)regular Sasaki-Einstein X_5, are recovered exactly from an expansion of field theory at strong coupling around configurations in the moduli space of vacua. These configurations can be thought of as a generalized matrix model of (local) commuting matrices. First, we reproduce the spectrum of scalar Kaluza-Klein modes on X_5. Secondly, we recover the precise spectrum of BMN string states, including a nontrivial dependence on the volume of X_5. Finally, we show how the radial direction in global AdS_5 emerges universally in these theories by exhibiting states dual to AdS giant gravitons.Comment: 1+28 pages. 1 figur

    The holographic quantum effective potential at finite temperature and density

    Full text link
    We develop a formalism that allows the computation of the quantum effective potential of a scalar order parameter in a class of holographic theories at finite temperature and charge density. The effective potential is a valuable tool for studying the ground state of the theory, symmetry breaking patterns and phase transitions. We derive general formulae for the effective potential and apply them to determine the phase transition temperature and density in the scaling region.Comment: 27 page

    Deconfinement and Thermodynamics in 5D Holographic Models of QCD

    Full text link
    We review 5D holographic approaches to finite temperature QCD. Thermodynamic properties of the "hard-wall" and the "soft-wall" models are derived. Various non-realistic features in these models are cured by the set-up of improved holographic QCD, that we review here.Comment: Invited review paper for Mod. Phys. Let

    Robustness of Sound Speed and Jet Quenching for Gauge/Gravity Models of Hot QCD

    Full text link
    We probe the effectiveness and robustness of a simple gauge/gravity dual model of the QCD fireball that breaks conformal symmetry by constructing a family of similar geometries that solve the scalar/gravity equations of motion. This family has two parameters, one of which is associated to the temperature. We calculate two quantities, the speed of sound and the jet-quenching parameter. We find the speed of sound to be universal and robust over all the geometries when appropriate units are used, while the jet-quenching parameter varies significantly away from the conformal limit. We note that the overall structure of the jet-quenching depends strongly on whether the running scalar is the dilaton or not. We also discuss the variation of the scalar potential over our family of solutions, and truncate our results to where the associated error is small.Comment: 21 pages, 9 figures, LaTeX. v2:references added, minor correction to speed of sound; conclusions unchange

    Holographic Conformal Window - A Bottom Up Approach

    Get PDF
    We propose a five-dimensional framework for modeling the background geometry associated to ordinary Yang-Mills (YM) as well as to nonsupersymmetric gauge theories possessing an infrared fixed point with fermions in various representations of the underlying gauge group. The model is based on the improved holographic approach, on the string theory side, and on the conjectured all-orders beta function for the gauge theory one. We first analyze the YM gauge theory. We then investigate the effects of adding flavors and show that, in the holographic description of the conformal window, the geometry becomes AdS when approaching the ultraviolet and the infrared regimes. As the number of flavors increases within the conformal window we observe that the geometry becomes more and more of AdS type over the entire energy range.Comment: 20 Pages, 3 Figures. v2: references adde
    corecore