16 research outputs found

    Antigenic differences between vaccine and circulating wild-type mumps viruses decreases neutralization capacity of vaccine-induced antibodies

    Full text link
    SUMMARYA recent resurgence of mumps in doubly vaccinated cohorts has been observed, identifying genotype G as the current predominant genotype. In this study, the neutralization efficacy of guinea pig sera immunized with three vaccine viruses: L-Zagreb, Urabe AM9 and JL5, was tested against seven mumps viruses: three vaccine strains and four wild-type strains (two of genotype G, one of genotype C, one of genotype D) isolated during 1998–2011. All sera neutralized all viruses although at different levels. The neutralization efficiency of sera decreases several fold by temporal order of virus isolation. Therefore, we concluded that gradual evolution of mumps viruses, rather than belonging to a certain genotype, results in an antigenic divergence from the vaccine strains that decrease the neutralization capacity of vaccine-induced antibodies. Moreover, the amino-acid sequence alignment revealed three new potentially relevant regions for escape from neutralization, i.e. 113–130, 375–403 and 440–443.</jats:p

    Supplementary Material for: Early Evolution of Human Respiratory Syncytial Virus ON1 Strains: Analysis of the Diversity in the C-Terminal Hypervariable Region of Glycoprotein Gene within the First 3.5 Years since Their Detection

    No full text
    <b><i>Objective:</i></b> Characterization of the phylogeny and diversity of human respiratory syncytial virus (HRSV) genotype ON1 that occurred during its early evolution (within the first 3.5 years since the detection of the first ON1 strains). ON1 strains have a 72-nucleotide-long in-frame duplication within the second hypervariable domain of the glycoprotein gene (HVR2). <b><i>Methods:</i></b> All available HVR2 sequences of strains belonging to the ON1 genotype published prior to June 20, 2014 were collected. Multiple sequence alignments, phylogeny, phylogeography, sequence clustering and putative protein analyses were performed. <b><i>Results:</i></b> The worldwide spread and diversification of ON1 strains are presented. Only in a minority of ON1 strains do the two replicas remain identical, and various ON1 strains possess common differences between the first and the second copy (segments A and B). Mutations of the progenitor sequence were more frequent in segment B, a higher overall diversity on the protein level and more putative glycosylation sites exist in segment B, and, unlike in segment A, positive selection acts on that protein region. <b><i>Conclusions:</i></b> The fast spread of the novel HRSV genotype ON1 has been accompanied by its rapid concurrent diversification. Differences in variability of the two replicas within HVR2 were detected, with C-terminal replica being more variable

    Supplementary Material for: Genetic Variability and Sequence Relatedness of Matrix Protein in Viruses of the Families Paramyxoviridae and Pneumoviridae

    No full text
    Background: The families Paramyxoviridae and Pneumoviridae comprise a broad spectrum of viral pathogens that affect human health. The matrix (M) protein of these viruses has a central role in their life cycle. In line with this, molecular characteristics of the M proteins from variable viruses that circulated in Croatia were investigated. Methods: Sequences of the M proteins of human parainfluenza virus (HPIV) 1–3 within the family Paramyxoviridae, human metapneumovirus (HMPV), and human respiratory syncytial virus from the family Pneumoviridae were obtained and analyzed. Results: M proteins were very diverse among HPIVs, but highly conserved within each virus. More variability was seen in nucleotide sequences of M proteins from the Pneumoviridae family. An insertion of 8 nucleotides in the 3′ untranslated region in 1 HMPV M gene sequence was discovered (HR347-12). As there are no samples with such an insertion in the database, this insertion is of interest and requires further research. Conclusion: While we have confirmed that M proteins were conserved among individual viruses, any changes that are observed should be given attention and further researched. Of special interest is inclusion of HPIV2 M proteins in this analysis, as these proteins have not been studied to the same extent as other paramyxoviruses
    corecore