174 research outputs found

    DDC (dopa decarboxylase (aromatic L-amino acid decarboxylase))

    Get PDF
    Review on DDC (dopa decarboxylase (aromatic L-amino acid decarboxylase)), with data on DNA, on the protein encoded, and where the gene is implicated

    Use of 137 Cs isotopic technique in soil erosion studies in Central Greece

    Get PDF
    The 137Cs technique was used to study soil erosion and deposition rates in soils in the Viotia prefecture, central Greece. Three sites with different soil types were selected and studied. Soils were sampled along transects and analyzed for 137Cs. The main goal of this field investigation was to study the 137Cs 3-D distribution pattern within key sites and to apply this information for the assessment of soil redistribution. The erosion and deposition rates were estimated using the proportional and the simplified mass balance models (Walling and He, 1997). Erosion and deposition rates predicted through the spatial distribution of 137Cs depended on the location of the profile studied in the landscape and were determined by the soil plough depth, the soil structure (bulk density), and the calibration model used to conve rt soil 137Cs measurements to estimates of soil redistribution rates. Estimated erosion rates for the Mouriki area site, varied from 16.62 to 102.56 t ha-1 y-1 for the top of the slope soil profile and from 5.37 to 25.68 t ha-1 y-1 for the middle of the slope soil profile. The deposition rates varied from 7.26 to 42.95 t ha-1 y-1 for the bottom of the slope soil profile

    Use of 137 Cs isotopic technique in soil erosion studies in Central Greece

    Get PDF
    The 137Cs technique was used to study soil erosion and deposition rates in soils in the Viotia prefecture, central Greece. Three sites with different soil types were selected and studied. Soils were sampled along transects and analyzed for 137Cs. The main goal of this field investigation was to study the 137Cs 3-D distribution pattern within key sites and to apply this information for the assessment of soil redistribution. The erosion and deposition rates were estimated using the proportional and the simplified mass balance models (Walling and He, 1997). Erosion and deposition rates predicted through the spatial distribution of 137Cs depended on the location of the profile studied in the landscape and were determined by the soil plough depth, the soil structure (bulk density), and the calibration model used to conve rt soil 137Cs measurements to estimates of soil redistribution rates. Estimated erosion rates for the Mouriki area site, varied from 16.62 to 102.56 t ha-1 y-1 for the top of the slope soil profile and from 5.37 to 25.68 t ha-1 y-1 for the middle of the slope soil profile. The deposition rates varied from 7.26 to 42.95 t ha-1 y-1 for the bottom of the slope soil profile

    The oxidizing power of the dark side: Rapid nocturnal aging of biomass burning as an overlooked source of oxidized organic aerosol

    Get PDF
    Oxidized organic aerosol (OOA) is a major component of ambient particulate matter, substantially affecting both climate and human health. A considerable body of evidence has established that OOA is readily produced in the presence of daylight, thus leading to the association of high concentrations of OOA in the summer or mid-afternoon. However, this current mechanistic understanding fails to explain elevated OOA concentrations during night or wintertime periods of low photochemical activity, thus leading atmospheric models to under predict OOA concentrations by a factor of 3-5. Here we show that fresh emissions from biomass burning rapidly forms OOA in the laboratory over a few hours and without any sunlight. The resulting OOA chemical composition is consistent with the observed OOA in field studies in major urban areas. To estimate the contribution of nocturnally aged OOA in the ambient atmosphere, we incorporate this nighttime-aging mechanism into a chemical-transport model and find that over much of the United States greater than 75% of the OOA formed from fresh biomass burning emissions underwent nighttime aging processes. Thus, the conceptual framework that OOA is predominantly formed in the presence of daylight fails to account for a substantial and rapid oxidation process occurring in the dark

    Rapid dark aging of biomass burning as an overlooked source of oxidized organic aerosol

    Get PDF
    To quantify the full implications of biomass burning emissions on the atmosphere, it is essential to accurately represent the emission plume after it has undergone chemical aging in the atmosphere. Atmospheric models typically consider the predominant aging pathway of biomass burning emissions to take place in the presence of sunlight (via the OH radical); however, this mechanism leads to consistent underpredictions of oxidized organic aerosol in wintertime urban areas. Here, we show, through a combination of laboratory experiments, ambient field measurements, and chemical transport modeling, that biomass burning emission plumes exposed to NO2 and O3 age rapidly without requiring any sunlight, thus providing an overlooked source of oxidized organic aerosol previously not accounted for in models

    Sources of water-soluble Brown Carbon at a South-Eastern European Site

    Get PDF
    Atmospheric brown carbon (BrC) is a highly uncertain, but potentially important contributor to light absorption in the atmosphere. Laboratory and field studies have shown that BrC can be produced from multiple sources, including primary emissions from fossil fuel combustion and biomass burning (BB), as well as secondary formation through a number of reaction pathways. It is currently thought that the dominant source of atmospheric BrC is primary emissions from BB, but relatively few studies demonstrate this in environments with complex source profiles. A field campaign was conducted during a month-long wintertime period in 2020 on the campus of the University of Peloponnese in the southwest of Patras, Greece which represents an urban site. During this time, ambient filter samples (a total of 35 filters) were collected from which the water-soluble BrC was determined using a semi-automated system similar to Hecobian et al. (2010), where absorption was measured over a 1 m path length. To measure the BrC, a UV-Vis Spectrophotometer was coupled to a Liquid Waveguide Capillary Cell and the light absorption intensity was recorded at 365 and 700 nm. The latter was used as a reference wavelength. We found that the average BrC absorption in Patras at a wavelength of 365 nm was 8.5 ± 3.9 Mm-1 suggesting that there was significant BrC in the organic aerosol during this period. Attribution of sources of BrC was done using simultaneous chemical composition data observations (primarily organic carbon, black carbon, and nitrate) combined with Positive Matrix Factorization analysis. This analysis showed that in addition to the important role of biomass burning (a contribution of about 20%) and other combustion emissions (also close to 20%), oxidized organic aerosol (approximately 40%) is also a significant contributor to BrC in the study area. Reference Hecobian, A., Zhang, X., Zheng, M., Frank, N., Edgerton, E.S., Weber, R.J., 2010. Water-soluble organic aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States. Atmos. Chem. Phys. 10, 5965–5977. https://doi.org/10.5194/acp-10-5965-201

    A portable dual-smog-chamber system for atmospheric aerosol field studies

    Get PDF
    Smog chamber experiments using ambient air as a starting point can improve our understanding of the evolution of atmospheric particulate matter at timescales longer than those achieved by traditional laboratory experiments. These types of studies can take place under more realistic environmental conditions addressing the interactions among multiple pollutants. The use of two identical smog chambers, with the first serving as the baseline chamber and the second as the perturbation chamber (in which addition or removal of pollutants, addition of oxidants, change in the relative humidity, etc.), can facilitate the interpretation of the results in such inherently complex experiments. The differences of the measurements in the two chambers can be used as the basis for the analysis of the corresponding chemical or physical processes of ambient air. A portable dual-smog-chamber system was developed using two identical pillow-shaped smog chambers (1.5&thinsp;m3 each). The two chambers are surrounded by UV lamps in a hexagonal arrangement yielding a total JNO2 of 0.1&thinsp;min−1. The system can be easily disassembled and transported, enabling the study of various atmospheric environments. Moreover, it can be used with natural sunlight. The results of test experiments using ambient air as the starting point are discussed as examples of applications of this system.</p

    Chemical evolution of primary and secondary biomass burning aerosols during daytime and nighttime

    Get PDF
    Primary emissions from wood and pellet stoves were aged in an atmospheric simulation chamber under daytime and nighttime conditions. The aerosol was analyzed with the online Aerosol Mass Spectrometer (AMS) and offline Fourier transform infrared spectroscopy (FTIR). Measurements using the two techniques agreed reasonably well in terms of the organic aerosol (OA) mass concentration, OA:OC trends, and concentrations of biomass burning markers – lignin-like compounds and anhydrosugars. Based on the AMS, around 15 % of the primary organic aerosol (POA) mass underwent some form of transformation during daytime oxidation conditions after 6–10 hours of atmospheric exposure. A lesser extent of transformation was observed during the nighttime oxidation. The decay of certain semi-volatile (e.g., levoglucosan) and less volatile (e.g., lignin-like) POA components was substantial during aging, highlighting the role of heterogeneous reactions and gas-particle partitioning. Lignin-like compounds were observed to degrade under both daytime and nighttime conditions, whereas anhydrosugars degraded only under daytime conditions. Among the marker mass fragments of primary biomass burning OA (bbPOA), heavy ones (higher m/z) were relatively more stable during aging. The biomass burning secondary OA (bbSOA) became more oxidized with continued aging and resembled those of aged atmospheric organic aerosols. The bbSOA formed during daytime oxidation was dominated by acids. Organonitrates were an important product of nighttime reactions in both humid and dry conditions. Our results underline the importance of changes to both the primary and secondary biomass burning aerosols during their atmospheric aging. Heavier AMS fragments seldomly used in atmospheric chemistry can be used as more stable tracers of bbPOA and in combination with the established levoglucosan marker, can provide an indication of the extent of bbPOA aging

    Oxidative Potential of Atmospheric Particles at an Eastern Mediterranean Site

    Get PDF
    Aerosol oxidative potential (OP; the inherent ability of ambient particles to generate reactive oxygen species in vivo) may be linked to the health effects of population exposure to aerosol and is a metric of their toxicity. The goal of this work was to quantify the water-soluble OP of particles in an urban area in Patras, Greece and to investigate its links with source emissions or components of this particulate matter (PM). A field campaign was conducted during a monthlong wintertime period in 2020 (January 10 to February 13) on the campus of the University of Peloponnese in the southwest of Patras. During this time, ambient filter samples (a total of 35 filters) were collected. To measure the water-soluble OP we used a semiautomated system similar to Fang et al. (2015) based on the dithiothreitol (DTT) assay. The accuracy of our system was validated by measuring the DTT activity of 11 phenanthrequinone (PQN) solutions on both our system and the identical semi-automated validated system at the National Observatory of Athens (NOA). These two sets of analysed DTT activities (current vs. NOA system) were significantly correlated (R2=0.99) with a slope of 1.15 ± 0.04 and an intercept close to zero. We found that the average water-soluble OP in Patras was 1.5 ± 0.3 nmol min-1 m-3, ranging from 0.7 to 2 nmol min-1 m-3. The OP measured in Patras during the campaign is higher than reported values from similar wintertime studies in other urban areas such as Athens (Paraskevopoulou et al., 2019). The average watersoluble OP during a summer study for Patras was significantly lower and equal to 0.18 ± 0.02 nmol min-1 m- 3. Taking into account the average PM1 mass concentrations for these two periods (summer: 6 μg m-3 and winter: 23 μg m-3) it is clear that the increase in OP was two times the increase in PM mass making the wintertime aerosol more toxic. Additionally, the water-soluble brown carbon (BrC) was determined using an offline semi-automated system, where absorption was measured over a 1 m path length. The average BrC absorption in Patras at a wavelength of 365 nm was 8.6 ± 3.9 Mm-1 suggesting that there was significant BrC in the organic aerosol during this period. The coefficients of determination, R2, in Table 1 are used as a metric of the potential relationships between the various carbonaceous aerosol components and the DTT activity. The results suggest that the OP is not dominated by a single source or component, but that there are multiple components contributing to it during the study period. Interestingly, the highest correlation coefficient (R2 = 0.46) was found between the OP and Brown Carbon. This is consistent with recently published results for an urban site in Atlanta where the oxidative potential measured with the DTT method also had stronger correlations with BrC during the winter (Gao et al., 2020)
    • …
    corecore