118 research outputs found

    Application of bio-based solvents for biocatalysed synthesis of amides with Pseudomonas stutzeri lipase (PSL)

    Get PDF
    Bio-based solvents were investigated for the biocatalysed amidation reactions of various ester-amine combinations by Pseudomonas stutzeri lipase (PSL). Reactions were undertaken in a range of green and potentially bio-based solvents including terpinolene, p-cymene, limonene, 2-methyl THF, ɣ-valerolactone, propylene carbonate, dimethyl isosorbide, glycerol triacetate and water. Solvent screenings demonstrated the importance and potential of using non-polar bio-based solvents for favouring aminolysis over hydrolysis; whilst substrate screenings highlighted the unfavourable impact of reactants bearing bulky para- or 4-substituents. Renewable terpene-based solvents (terpinolene, p-cymene, D-limonene) were demonstrated to be suitable bio-based media for PSL amidation reactions. Such solvents could provide a greener and more sustainable alternative to traditional petrochemical derived non-polar solvents. Importantly, once the enzyme (either PSL or CALB) binds with a bulky para-substituted substrate, only small reagents are able to access the active site. This therefore limits the possibility for aminolysis to take place, thereby promoting the hydrolysis. This mechanism of binding supports the widely accepted 'Ping Pong - Bi Bi' mechanism used to describe enzyme kinetics. The work highlights the need to further investigate enzyme activity in relation to para- or 4-substituted substrates. A priority in PSL chemistry remains a methodology to tackle the competing hydrolysis reaction

    Application of bio-based solvents for biocatalysed synthesis of amides with Pseudomonas stutzeri lipase (PSL)

    Get PDF
    Bio-based solvents were investigated for the biocatalysed amidation reactions of various ester-amine combinations by Pseudomonas stutzeri lipase (PSL). Reactions were undertaken in a range of green and potentially bio-based solvents including terpinolene, p-cymene, limonene, 2-methyl THF, ɣ-valerolactone, propylene carbonate, dimethyl isosorbide, glycerol triacetate and water. Solvent screenings demonstrated the importance and potential of using non-polar bio-based solvents for favouring aminolysis over hydrolysis; whilst substrate screenings highlighted the unfavourable impact of reactants bearing bulky para- or 4-substituents. Renewable terpene-based solvents (terpinolene, p-cymene, D-limonene) were demonstrated to be suitable bio-based media for PSL amidation reactions. Such solvents could provide a greener and more sustainable alternative to traditional petrochemical derived non-polar solvents. Importantly, once the enzyme (either PSL or CALB) binds with a bulky para-substituted substrate, only small reagents are able to access the active site. This therefore limits the possibility for aminolysis to take place, thereby promoting the hydrolysis. This mechanism of binding supports the widely accepted 'Ping Pong - Bi Bi' mechanism used to describe enzyme kinetics. The work highlights the need to further investigate enzyme activity in relation to para- or 4-substituted substrates. A priority in PSL chemistry remains a methodology to tackle the competing hydrolysis reaction

    The search for the ideal biocatalyst

    Get PDF
    While the use of enzymes as biocatalysts to assist in the industrial manufacture of fine chemicals and pharmaceuticals has enormous potential, application is frequently limited by evolution-led catalyst traits. The advent of designer biocatalysts, produced by informed selection and mutation through recombinant DNA technology, enables production of process-compatible enzymes. However, to fully realize the potential of designer enzymes in industrial applications, it will be necessary to tailor catalyst properties so that they are optimal not only for a given reaction but also in the context of the industrial process in which the enzyme is applied

    O-linked sialoglycans modulate the proteolysis of SARS-CoV-2 spike and likely contribute to the mutational trajectory in variants of concern.

    Get PDF
    The emergence of a polybasic cleavage motif for the protease furin in SARS-CoV-2 spike has been established as a major factor for human viral transmission. The region N-terminal to that motif is extensively mutated in variants of concern (VOCs). Besides furin, spikes from these variants appear to rely on other proteases for maturation, including TMPRSS2. Glycans near the cleavage site have raised questions about proteolytic processing and the consequences of variant-borne mutations. Here, we identify that sialic acid-containing O-linked glycans on Thr678 of SARS-CoV-2 spike influence furin and TMPRSS2 cleavage and posit O-linked glycosylation as a likely driving force for the emergence of VOC mutations. We provide direct evidence that the glycosyltransferase GalNAc-T1 primes glycosylation at Thr678 in the living cell, an event that is suppressed by mutations in the VOCs Alpha, Delta, and Omicron. We found that the sole incorporation of N-acetylgalactosamine did not impact furin activity in synthetic O-glycopeptides, but the presence of sialic acid reduced the furin rate by up to 65%. Similarly, O-glycosylation with a sialylated trisaccharide had a negative impact on TMPRSS2 cleavage. With a chemistry-centered approach, we substantiate O-glycosylation as a major determinant of spike maturation and propose disruption of O-glycosylation as a substantial driving force for VOC evolution

    Recommendations of the Neuroendocrinology Department of the Brazilian Society of Endocrinology and Metabolism for the diagnosis of Cushing’s disease in Brazil

    Full text link

    Clinical factors involved in the recurrence of pituitary adenomas after surgical remission: a structured review and meta-analysis

    Full text link
    • …
    corecore