193 research outputs found
Hot Defect Superconformal Field Theory in an External Magnetic Field
In this paper we investigate the influence of an external magnetic field on a
flavoured holographic gauge theory dual to the D3/D5 intersection at finite
temperature. Our study shows that the external magnetic field has a freezing
effect on the confinement/ deconfinement phase transition. We construct the
corresponding phase diagram. We investigate some thermodynamic quantities of
the theory. A study of the entropy reveals enhanced relative jump of the
entropy at the "chiral" phase transition. A study of the magnetization shows
that both the confined and deconfined phases exhibit diamagnetic response. The
diamagnetic response in the deconfined phase has a stronger temperature
dependence reflecting the temperature dependence of the conductivity. We study
the meson spectrum of the theory and analyze the stability of the different
phases looking at both normal and quasi-normal semi-classical excitations. For
the symmetry breaking phase we analyze the corresponding pseudo-Goldstone modes
and prove that they satisfy non-relativistic dispersion relation.Comment: 42 pages, 14 figure
Gustafson-Kessel Algorithm for Evolving Data Stream Clustering
A simplified clustering algorithm that enables on-line
partitioning of data streams is proposed. The algorithm applies
adaptive-distance metric to identify clusters with different shape and
orientation. It is applicable to a wide range of practical evolving system
type applications as diagnostics and prognostics, system identification,
real time classification, and process quality monitoring and control
Universal Holographic Chiral Dynamics in an External Magnetic Field
In this work we further extend the investigation of holographic gauge
theories in external magnetic fields, continuing earlier work. We study the
phenomenon of magnetic catalysis of mass generation in 1+3 and 1+2 dimensions,
using D3/D7- and D3/D5-brane systems, respectively. We obtain the low energy
effective actions of the corresponding pseudo Goldstone bosons and study their
dispersion relations. The D3/D7 system exhibits the usual
Gell-Mann--Oakes--Renner (GMOR) relation and a relativistic dispersion
relation, while the D3/D5 system exhibits a quadratic non-relativistic
dispersion relation and a modified linear GMOR relation. The low energy
effective action of the D3/D5 system is related to that describing magnon
excitations in a ferromagnet. We also study properties of general Dp/Dq systems
in an external magnetic field and verify the universality of the magnetic
catalysis of dynamical symmetry breaking.Comment: 41 pages, 11 figures, references adde
An Extended Version ofGustafson-Kessel Clustering Algorithm for Evolving Data Stream Clustering Evolving Intelligent Systems: Methodology and Applications
The chapter deals with a recursive clustering algorithm that
enables a real time partitioning of data streams. Proposed algorithm
incorporates the advantages of the Gustafson-Kessel clustering algorithm of
identifying clusters with different shape and orientation while expanding
its area of application to the challenging problem of real time data
clustering. The algorithm is applicable to a wide range of practical
evolving system type applications as diagnostics and prognostics, system
identification, real time classification, and process quality monitoring and control
Magnetic Catalysis in AdS4
We study the formation of fermion condensates in Anti de Sitter space. In
particular, we describe a novel version of magnetic catalysis that arises for
fermions in asymptotically AdS4 geometries which cap off in the infra-red with
a hard wall. We show that the presence of a magnetic field induces a fermion
condensate in the bulk that spontaneously breaks CP symmetry. From the
perspective of the dual boundary theory, this corresponds to a strongly coupled
version of magnetic catalysis in d=2+1.Comment: 22 pages, 4 figures. v2: References added, factors of 2 corrected,
extra comments added in appendix. v3: extra comments about fermion modes in a
hard wall background. v4: A final factor of
Critical Exponents from AdS/CFT with Flavor
We use the AdS/CFT correspondence to study the thermodynamics of massive N=2
supersymmetric hypermultiplet flavor fields coupled to N=4 supersymmetric
SU(Nc) Yang-Mills theory, formulated on curved four-manifolds, in the limits of
large Nc and large 't Hooft coupling. The gravitational duals are probe
D-branes in global thermal AdS. These D-branes may undergo a topology-changing
transition in the bulk. The D-brane embeddings near the point of the topology
change exhibit a scaling symmetry. The associated scaling exponents can be
either real- or complex-valued. Which regime applies depends on the
dimensionality of a collapsing submanifold in the critical embedding. When the
scaling exponents are complex-valued, a first-order transition associated with
the flavor fields appears in the dual field theory. Real scaling exponents are
expected to be associated with a continuous transition in the dual field
theory. For one example with real exponents, the D7-brane, we study the
transition in detail. We find two field theory observables that diverge at the
critical point, and we compute the associated critical exponents. We also
present analytic and numerical evidence that the transition expresses itself in
the meson spectrum as a non-analyticity at the critical point. We argue that
the transition we study is a true phase transition only when the 't Hooft
coupling is strictly infinite.Comment: 31 pages, 21 eps files in 12 figures; v2 added one reference and one
footnote, version published in JHE
Holographic Spectral Functions in Metallic AdS/CFT
We study the holographic D3/D7 setup dual to N=4 supersymmetric Yang-Mills
with quenched fundamental matter. We extend the previous analyses of
conductivity and photoproduction to the case where there is a finite electric
field. Due to the electric field a special region in the D7-brane geometry,
labelled the singular shell, appears generically, and the computation of
correlators involves a careful study of the indicial exponents both at this
singular region and at the horizon. We show that there is a unique choice
consistent with the known expression for the electrical conductivity found by
Karch and O'Bannon. We explore the parameter space spanned by the quark mass,
the baryon density and the electric field. We find a region where the
conductivity and photoproduction change rapidly and trace this behavior to
competing effects which manifest themselves as a crossover behavior in the
probe brane embeddings.Comment: 30 pages, 13 figures, v2. references added, minor corrections mad
Strongly bound mesons at finite temperature and in magnetic fields from AdS/CFT
We study mesons in N=4 super Yang-Mills theory with fundamental flavors added
at large 't Hooft coupling using the gauge/gravity correspondence. High-spin
mesons are well described by using semiclassical string configurations. We
determine the meson spectrum at finite temperature and in a background magnetic
field.Comment: 15 pages, 11 figures; v2: references adde
Holographic Flavor Transport in Arbitrary Constant Background Fields
We use gauge-gravity duality to compute a new transport coefficient
associated with a number Nf of massive N=2 supersymmetric hypermultiplet fields
propagating through an N=4 SU(Nc) super-Yang-Mills theory plasma in the limits
of large Nc and large 't Hooft coupling, with Nf << Nc. We introduce a baryon
number density as well as arbitrary constant electric and magnetic fields,
generalizing previous calculations by including a magnetic field with a
component parallel to the electric field. We can thus compute all components of
the conductivity tensor associated with transport of baryon number charge,
including a component never before calculated in gauge-gravity duality. We also
compute the contribution that the flavor degrees of freedom make to the
stress-energy tensor, which exhibits divergences associated with the rates of
energy and momentum loss of the flavor degrees of freedom. We discuss two
currents that are free from these divergences, one of which becomes anomalous
when the magnetic field has a component parallel to the electric field and
hence may be related to recent study of charge transport in the presence of
anomalies.Comment: 27 page
D3/D7 Quark-Gluon Plasma with Magnetically Induced Anisotropy
We study the effects of the temperature and of a magnetic field in the setup
of an intersection of D3/D7 branes, where a large number of D7 branes is
smeared in the transverse directions to allow for a perturbative solution in a
backreaction parameter. The magnetic field sources an anisotropy in the plasma,
and we investigate its physical consequences for the thermodynamics and energy
loss of particles probing the system. In particular we comment on the
stress-energy tensor of the plasma, the propagation of sound in the directions
parallel and orthogonal to the magnetic field, the drag force of a quark moving
through the medium and jet quenching.Comment: 29 pages + appendices, 5 figures. v2 Version to appear in JHEP, with
minor revisions, references added and typos correcte
- …