1,902 research outputs found

    Remote Sensing/gis Integration for Site Planning and Resource Management

    Get PDF
    The development of an interactive/batch gridded information system (array of cells georeferenced to USGS quad sheets) and interfacing application programs (e.g., hydrologic models) is discussed. This system allows non-programer users to request any data set(s) stored in the data base by inputing any random polygon's (watershed, political zone) boundary points. The data base information contained within this polygon can be used to produce maps, statistics, and define model parameters for the area. Present/proposed conditions for the area may be compared by inputing future usage (land cover, soils, slope, etc.). This system, known as the Hydrologic Analysis Program (HAP), is especially effective in the real time analysis of proposed land cover changes on runoff hydrographs and graphics/statistics resource inventories of random study area/watersheds

    Planning For Claims: An Ethnography of Industry Culture

    Get PDF
    Claims by contractors for additional payments have been identified by commentators as a major source of difficulty in the industry. Ethnographic research with industry members reveals some key features of planning practices that underlie such events. Claims are sometimes planned at tender stage and sometimes during the course of a project. One practice at tender stage is a pricing technique that minimizes the tender price while maximizing the out-turn cost of a contract by exploiting mistakes in the bill of quantities. Another is the programming of work to maximize its vulnerability to delay. More reactive techniques may be employed during the course of the project, often to make up for an unanticipated increase in costs. These and other similar practices may be reported as features of an integrated culture, defined in such a way as to encompass activity and reject Cartesian dualism. The unique adequacy requirements of methods are suitable criteria for the evaluation of such reports. The claims culture arises from economic conditions in the industry, which include low entry barriers and competitive tendering. However, removal of these conditions alone cannot guarantee that the practices will cease

    Climate change : a response surface study of the effects of CO2 and temperature on the growth of French beans

    Get PDF
    The possible impact of global rises in atmospheric CO2 concentration and temperature on the growth and development of French beans (Phaseolus vulgaris) was examined using growth cabinets. Five CO2 concentrations of 350, 450, 550, 650 and 750 vpm and five temperatures of 14·5, 15·5, 16·5, 17·5 and 18·5°C were tested using a fractional factorial design comprising nine treatment combinations of the two factors. Plants were grown under constant irradiance, common atmospheric humidities (vpd 0·5 kPa) and non-limiting supplies of water and mineral nutrients. The plant growth response was modelled by fitting polynomial response function curves to the times to first flower opening, first bean set, 50% maturity and the number and yield of beans. The effects of temperature were large and positive for most of the measured variables, whereas the effects of CO2 were small and negative or non-existent. Increased temperature substantially reduced the time to flowering and the time from bean set to 50% maturity and increased the number and yield of mature beans whereas increased CO2 concentration had little effect on plant growth except that bean yield was very slightly reduced. There was no significant evidence of interaction between the CO2 concentration effects and the temperature effects. The time to maturity and yield of mature beans was simulated for the 2020s (2010 to 2039) and the 2050s (2040 to 2069) using the fitted polynomial models and four climate change scenarios suggested by the UK Climate Impacts Programme. These simulations showed that, depending upon the assumed scenario, the 2020s yields could rise by 39–84% and time to maturity reduce by between 6 and 15 days whereas the 2050s yields could rise by 51–118% and time to maturity reduce by between 9 and 25 days

    The Computational Complexity of the Game of Set and its Theoretical Applications

    Full text link
    The game of SET is a popular card game in which the objective is to form Sets using cards from a special deck. In this paper we study single- and multi-round variations of this game from the computational complexity point of view and establish interesting connections with other classical computational problems. Specifically, we first show that a natural generalization of the problem of finding a single Set, parameterized by the size of the sought Set is W-hard; our reduction applies also to a natural parameterization of Perfect Multi-Dimensional Matching, a result which may be of independent interest. Second, we observe that a version of the game where one seeks to find the largest possible number of disjoint Sets from a given set of cards is a special case of 3-Set Packing; we establish that this restriction remains NP-complete. Similarly, the version where one seeks to find the smallest number of disjoint Sets that overlap all possible Sets is shown to be NP-complete, through a close connection to the Independent Edge Dominating Set problem. Finally, we study a 2-player version of the game, for which we show a close connection to Arc Kayles, as well as fixed-parameter tractability when parameterized by the number of rounds played

    Polynomial Kernels for Weighted Problems

    Full text link
    Kernelization is a formalization of efficient preprocessing for NP-hard problems using the framework of parameterized complexity. Among open problems in kernelization it has been asked many times whether there are deterministic polynomial kernelizations for Subset Sum and Knapsack when parameterized by the number nn of items. We answer both questions affirmatively by using an algorithm for compressing numbers due to Frank and Tardos (Combinatorica 1987). This result had been first used by Marx and V\'egh (ICALP 2013) in the context of kernelization. We further illustrate its applicability by giving polynomial kernels also for weighted versions of several well-studied parameterized problems. Furthermore, when parameterized by the different item sizes we obtain a polynomial kernelization for Subset Sum and an exponential kernelization for Knapsack. Finally, we also obtain kernelization results for polynomial integer programs

    On Structural Parameterizations of Hitting Set: Hitting Paths in Graphs Using 2-SAT

    Get PDF
    Hitting Set is a classic problem in combinatorial optimization. Its input consists of a set system F over a finite universe U and an integer t; the question is whether there is a set of t elements that intersects every set in F. The Hitting Set problem parameterized by the size of the solution is a well-known W[2]-complete problem in parameterized complexity theory. In this paper we investigate the complexity of Hitting Set under various structural parameterizations of the input. Our starting point is the folklore result that Hitting Set is polynomial-time solvable if there is a tree T on vertex set U such that the sets in F induce connected subtrees of T. We consider the case that there is a treelike graph with vertex set U such that the sets in F induce connected subgraphs; the parameter of the problem is a measure of how treelike the graph is. Our main positive result is an algorithm that, given a graph G with cyclomatic number k, a collection P of simple paths in G, and an integer t, determines in time 2^{5k} (|G| +|P|)^O(1) whether there is a vertex set of size t that hits all paths in P. It is based on a connection to the 2-SAT problem in multiple valued logic. For other parameterizations we derive W[1]-hardness and para-NP-completeness results.Comment: Presented at the 41st International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2015. (The statement of Lemma 4 was corrected in this update.

    Streaming Kernelization

    Full text link
    Kernelization is a formalization of preprocessing for combinatorially hard problems. We modify the standard definition for kernelization, which allows any polynomial-time algorithm for the preprocessing, by requiring instead that the preprocessing runs in a streaming setting and uses O(poly(k)logx)\mathcal{O}(poly(k)\log|x|) bits of memory on instances (x,k)(x,k). We obtain several results in this new setting, depending on the number of passes over the input that such a streaming kernelization is allowed to make. Edge Dominating Set turns out as an interesting example because it has no single-pass kernelization but two passes over the input suffice to match the bounds of the best standard kernelization

    The effect of cultural and environmental factors on potato seed tuber morphology and subsequent sprout and stem development

    Get PDF
    Seed crops of the variety Estima were grown in each of 2 years using two planting dates, two harvest dates, two plant densities and two irrigation regimes to produce seed tubers which had experienced different cultural and environmental conditions. The effects of these treatments on tuber characteristics, sprout production and stem development in the ware crop were then determined in subsequent experiments using storage regimes of 3 and 10 °C. Time of planting the seed crop affected numbers of eyes, sprouts and above ground stems in the subsequent ware crop because environmental conditions around the time of tuber initiation appeared to alter tuber shape. Cooler, wetter conditions in the 7 days after tuber initiation were associated with tubers which were longer, heavier and had more eyes, sprouts and above ground stems. In contrast, the time of harvesting the seed crop did not affect tuber shape or numbers of above ground stems and there was no interaction with tuber size. The density of the seed crop had no effect on any character measured and irrigation well after tuber initiation did not affect tuber shape, numbers of sprouts or numbers of stems. Seed production treatments, which resulted in earlier dormancy break, were associated with tubers that produced more sprouts and above ground stems, in contrast to the conventional understanding of apical dominance. Storage at 3 °C gave fewer sprouts, a lower proportion of eyes with sprouts and fewer stems than storage at 10 °C. The major effects on stem production appear to result from environmental conditions at the time of tuber initiation of the seed crop and sprouting temperature

    The Parameterized Complexity of Domination-type Problems and Application to Linear Codes

    Full text link
    We study the parameterized complexity of domination-type problems. (sigma,rho)-domination is a general and unifying framework introduced by Telle: a set D of vertices of a graph G is (sigma,rho)-dominating if for any v in D, |N(v)\cap D| in sigma and for any $v\notin D, |N(v)\cap D| in rho. We mainly show that for any sigma and rho the problem of (sigma,rho)-domination is W[2] when parameterized by the size of the dominating set. This general statement is optimal in the sense that several particular instances of (sigma,rho)-domination are W[2]-complete (e.g. Dominating Set). We also prove that (sigma,rho)-domination is W[2] for the dual parameterization, i.e. when parameterized by the size of the dominated set. We extend this result to a class of domination-type problems which do not fall into the (sigma,rho)-domination framework, including Connected Dominating Set. We also consider problems of coding theory which are related to domination-type problems with parity constraints. In particular, we prove that the problem of the minimal distance of a linear code over Fq is W[2] for both standard and dual parameterizations, and W[1]-hard for the dual parameterization. To prove W[2]-membership of the domination-type problems we extend the Turing-way to parameterized complexity by introducing a new kind of non deterministic Turing machine with the ability to perform `blind' transitions, i.e. transitions which do not depend on the content of the tapes. We prove that the corresponding problem Short Blind Multi-Tape Non-Deterministic Turing Machine is W[2]-complete. We believe that this new machine can be used to prove W[2]-membership of other problems, not necessarily related to dominationComment: 19 pages, 2 figure
    corecore