40,474 research outputs found
Extreme paths in oriented 2D Percolation
A useful result about leftmost and rightmost paths in two dimensional bond
percolation is proved. This result was introduced without proof in \cite{G} in
the context of the contact process in continuous time. As discussed here, it
also holds for several related models, including the discrete time contact
process and two dimensional site percolation. Among the consequences are a
natural monotonicity in the probability of percolation between different sites
and a somewhat counter-intuitive correlation inequality
Thermal design of the space shuttle external tank
The shuttle external tank thermal design presents many challenges in meeting the stringent requirements established by the structures, main propulsion systems, and Orbiter elements. The selected thermal protection design had to meet these requirements, and ease of application, suitability for mass production considering low weight, cost, and high reliability. This development led to a spray-on-foam (SOFI) which covers the entire tank. The need and design for a SOFI material with a dual role of cryogenic insulation and ablator, and the development of the SOFI over SLA concept for high heating areas are discussed. Further issuses of minimum surface ice/frost, no debris, and the development of the TPS spray process considering the required quality and process control are examined
Ultrasound enhancement of microfiltration performance for natural organic matter removal
Sonication of water at 1500 W power prior to microfiltration showed that short sonication times (60 s) gave a reduced flux decline. It is suggested that a less potent, smaller molecular form of the natural organic matter (NOM) was produced by sonication. Longer sonication times diminished this beneficial effect. This may be due to the formation of aggregates or compounds that are more readily adsorbed on the membrane. Where the sonication was preceded by an alum treatment, the flux loss showed a regular decrease with longer sonication times. It is suggested that the effects of sonication on the alum flocs and on the flocs; NOM interactions may play a critical role in regulating the flux. Where sand was present on sonication at 800 and 1400 W, the cavitational energy was focussed on adsorbed organic material, resulting in more efficient destruction and the formation of compounds that counteracted the flux enhancement
Early Results on Radioactive Background Characterization for Sanford Laboratory and DUSEL Experiments
Measuring external sources of background for a deep underground laboratory at
the Homestake Mine is an important step for the planned low-background
experiments. The naturally occurring -ray fluxes at different levels in
the Homestake Mine are studied using NaI detectors and Monte Carlo simulations.
A simple algorithm is developed to convert the measured -ray rates into
-ray fluxes. A good agreement between the measured and simulated
-ray fluxes is achieved with the knowledge of the chemical composition
and radioactivity levels in the rock. The neutron fluxes and -ray
fluxes are predicted by Monte Carlo simulations for different levels including
inaccessible levels that are under construction for the planned low background
experiments.Comment: 16 pages, 2 figures, and 9 table
A connection with parallel totally skew-symmetric torsion on a class of almost hypercomplex manifolds with Hermitian and anti-Hermitian metrics
The subject of investigations are the almost hypercomplex manifolds with
Hermitian and anti-Hermitian (Norden) metrics. A linear connection D is
introduced such that the structure of these manifolds is parallel with respect
to D and its torsion is totally skew-symmetric. The class of the nearly Kaehler
manifolds with respect to the first almost complex structure is of special
interest. It is proved that D has a D-parallel torsion and is weak if it is not
flat. Some curvature properties of these manifolds are studied.Comment: 18 page
The spectroscopic binary system Gl 375. I. Orbital parameters and chromospheric activity
We study the spectroscopic binary system Gl 375. We employ medium resolution
echelle spectra obtained at the 2.15 m telescope at the Argentinian observatory
CASLEO and photometric observations obtained from the ASAS database. We
separate the composite spectra into those corresponding to both components. The
separated spectra allow us to confirm that the spectral types of both
components are similar (dMe3.5) and to obtain precise measurements of the
orbital period (P = 1.87844 days), minimum masses (M_1 sin^3 i = 0.35 M_sun and
M_2 sin^3 i =0.33 M_sun) and other orbital parameters. The photometric
observations exhibit a sinusoidal variation with the same period as the orbital
period. We interpret this as signs of active regions carried along with
rotation in a tidally synchronized system, and study the evolution of the
amplitude of the modulation in longer timescales. Together with the mean
magnitude, the modulation exhibits a roughly cyclic variation with a period of
around 800 days. This periodicity is also found in the flux of the Ca II K
lines of both components, which seem to be in phase. The periodic changes in
the three observables are interpreted as a sign of a stellar activity cycle.
Both components appear to be in phase, which implies that they are magnetically
connected. The measured cycle of approximately 2.2 years (800 days) is
consistent with previous determinations of activity cycles in similar stars.Comment: 10 pages, including 11 figures and 3 tables. Accepted for publication
in Astronomy & Astrophysic
Electron-nuclei spin dynamics in II-VI semiconductor quantum dots
We report on the dynamics of optically induced nuclear spin polarization in
individual CdTe/ZnTe quantum dots loaded with one electron by modulation
doping. The fine structure of the hot trion (charged exciton with an
electron in the -shell) is identified in photoluminescence excitation
spectra. A negative polarisation rate of the photoluminescence, optical pumping
of the resident electron and the built-up of dynamic nuclear spin polarisation
(DNSP) are observed in time-resolved optical pumping experiments when the
quantum dot is excited at higher energy than the hot trion triplet state. The
time and magnetic field dependence of the polarisation rate of the
emission allows to probe the dynamics of formation of the DNSP in the optical
pumping regime. We demonstrate using time-resolved measurements that the
creation of a DNSP at B=0T efficiently prevents longitudinal spin relaxation of
the electron caused by fluctuations of the nuclear spin bath. The DNSP is built
in the microsecond range at high excitation intensity. A relaxation time of the
DNSP in about 10 microseconds is observed at and significantly increases
under a magnetic field of a few milli-Tesla. We discuss mechanisms responsible
for the fast initialisation and relaxation of the diluted nuclear spins in this
system
The Molonglo Galactic Plane Survey: I. Overview and Images
The first epoch Molonglo Galactic Plane Survey (MGPS1) is a radio continuum
survey made using the Molonglo Observatory Synthesis Telescope (MOST) at 843
MHz with a resolution of 43" X 43" cosec |delta|. The region surveyed is 245
deg < l < 355 deg, |b| < 1.5 deg. The thirteen 9 deg X 3 deg mosaic images
presented here are the superposition of over 450 complete synthesis
observations, each taking 12 h and covering 70' X 70' cosec |delta|. The
root-mean-square sensitivity over much of the mosaiced survey is 1-2 mJy/beam
(1 sigma), and the positional accuracy is approximately 1" X 1" cosec |delta|
for sources brighter than 20 mJy. The dynamic range is no better than 250:1,
and this also constrains the sensitivity in some parts of the images. The
survey area of 330 sq deg contains well over 12,000 unresolved or barely
resolved objects, almost all of which are extra-galactic sources lying in the
Zone of Avoidance. In addition a significant fraction of this area is covered
by extended, diffuse emission associated with thermal complexes, discrete H II
regions, supernova remnants, and other structures in the Galactic interstellar
medium.Comment: Paper with 3 figures and 1 table + Table 2 + 7 jpg grayscales for Fig
4. Astrophysical Journal Supplement (in press) see also
http://www.astrop.physics.usyd.edu.au/MGP
Calculating Nonlocal Optical Properties of Structures with Arbitrary Shape
In a recent Letter [Phys. Rev. Lett. 103, 097403 (2009)], we outlined a
computational method to calculate the optical properties of structures with a
spatially nonlocal dielectric function. In this Article, we detail the full
method, and verify it against analytical results for cylindrical nanowires.
Then, as examples of our method, we calculate the optical properties of Au
nanostructures in one, two, and three dimensions. We first calculate the
transmission, reflection, and absorption spectra of thin films. Because of
their simplicity, these systems demonstrate clearly the longitudinal (or
volume) plasmons characteristic of nonlocal effects, which result in anomalous
absorption and plasmon blueshifting. We then study the optical properties of
spherical nanoparticles, which also exhibit such nonlocal effects. Finally, we
compare the maximum and average electric field enhancements around nanowires of
various shapes to local theory predictions. We demonstrate that when nonlocal
effects are included, significant decreases in such properties can occur.Comment: 30 pages, 12 figures, 1 tabl
- …
