26 research outputs found

    Drag estimation on wedge-shaped protuberances in high-speed flows

    Get PDF
    A semi-empirical method is developed to estimate drag on wedge-shaped projections in hypersonic flow. Force balance measurements from gun tunnel tests directly measure total drag on blunt wedges, where the boundary layer and the entropy layer are weakly coupled. Detailed flowfield analysis from numerical simulations provides estimated locations of peak pressure ratio and skin friction. Schlieren images are used for detecting incipient separation in incoming flows with laminar and turbulent boundary layers. Test results indicate the presence of local hotspots at reattachment points of strong detached shocks on the wedge compression ramp, and of primary and secondary vortical structures around lateral faces. Total drag is found to decrease with decreasing bluntness but increasing slenderness in wedges tend to increase skin friction drag

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    A case study on the aerodynamic heating of a hypersonic vehicle

    Get PDF
    A Parabolised Navier-Stokes (PNS) flow solver is used to predict the aerodynamic heating on the surface of a hypersonic vehicle. This case study highlights some of the main heat flux sensitivies to various conditions for a full-scale vehicle and illustrates the use of different complimentary methods in assessing the heat load for a realistic application. Different flight phases of the vehicle are considered, with freestream conditions from Mach 4 to Mach 8 across a range of altitudes. Both laminar and turbulent flows are studied, together with the effect of the isothermal wall temperature, boundary-layer transition location and body incidence. The effect of the Spalart-Allmaras and Baldwin-Lomax turbulent models on the heat transfer distributions is assessed. A rigorous assessment of the computations is conducted through both iterative and grid convergence studies and a supporting experimental investigation is performed on a 1/20th scale model of the vehicle's forebody for the validation of the numerical results. Good agreement is found between the PNS predictions, measurements and empirical methods for the vehicle forebody. The present PNS approach is shown to provide useful predictions of the heat transfer over the axisymmetric vehicle body. A highly complex flow field is predicted in the fin-body-fin region at the rear of the vehicle characterised by strong interference effects which limit the predictions over this region to a predominately qualitative level

    Measurement of shock wave unsteadiness using a high-speed schlieren system and digital image processing

    Get PDF
    A new method to measure shock wave unsteadiness is presented. Time-resolved visualizations of the flow field under investigation are obtained using a high-speed schlieren optical system and the motion of the shock wave is determined by means of digital image processing. Information on the shock’s unsteadiness is subsequently derived with Fourier analysis. A sample study on shock unsteadiness in a shock-wave/turbulent boundary-layer interaction with separation is included. The method presented enables a measure of shock unsteadiness at locations in the imaged flow field not accessible by intrusive methods

    Reattachment heating upstream of short compression ramps in hypersonic flow

    Get PDF
    10.1007/s00348-016-2177-xExperiments in Fluids5759

    Roughness-induced turbulent wedges in a hypersonic blunt-body boundary layer

    Full text link
    AbstractThis paper uses measurements of surface heat transfer to study roughness-induced turbulent wedges in a hypersonic boundary layer on a blunt cylinder. A family of wedges was produced by changing the height of an isolated roughness element, providing conditions in the following range: fully effective tripping, for the largest element, with a turbulent wedge forming immediately downstream of the element; a long wake, in length several hundred times the boundary layer thickness, leading ultimately to transition; and retention of laminar flow, for the smallest element. With appropriate element size, a fully intermittent wedge formed, comprising a clear train of turbulent spots.</jats:p
    corecore