1,177 research outputs found
Egorov property in perturbed cat map
We study the time evolution of the quantum-classical correspondence (QCC) for
the well known model of quantised perturbed cat maps on the torus in the very
specific regime of semi-classically small perturbations. The quality of the QCC
is measured by the overlap of classical phase-space density and corresponding
Wigner function of the quantum system called quantum-classical fidelity (QCF).
In the analysed regime the QCF strongly deviates from the known general
behaviour in particular it decays faster then exponential. Here we study and
explain the observed behavior of the QCF and the apparent violation of the QCC
principle.Comment: 12 pages, 7 figure
Deterministic spin models with a glassy phase transition
We consider the infinite-range deterministic spin models with Hamiltonian
, where is the quantization of a
chaotic map of the torus. The mean field (TAP) equations are derived by summing
the high temperature expansion. They predict a glassy phase transition at the
critical temperature .Comment: 8 pages, no figures, RevTex forma
Relative entropy via non-sequential recursive pair substitutions
The entropy of an ergodic source is the limit of properly rescaled 1-block
entropies of sources obtained applying successive non-sequential recursive
pairs substitutions (see P. Grassberger 2002 ArXiv:physics/0207023 and D.
Benedetto, E. Caglioti and D. Gabrielli 2006 Jour. Stat. Mech. Theo. Exp. 09
doi:10.1088/1742.-5468/2006/09/P09011). In this paper we prove that the cross
entropy and the Kullback-Leibler divergence can be obtained in a similar way.Comment: 13 pages , 2 figure
Pairing, crystallization and string correlations of mass-imbalanced atomic mixtures in one-dimensional optical lattices
We numerically determine the very rich phase diagram of mass-imbalanced
binary mixtures of hardcore bosons (or equivalently -- fermions, or
hardcore-Bose/Fermi mixtures) loaded in one-dimensional optical lattices.
Focusing on commensurate fillings away from half filling, we find a strong
asymmetry between attractive and repulsive interactions. Attraction is found to
always lead to pairing, associated with a spin gap, and to pair crystallization
for very strong mass imbalance. In the repulsive case the two atomic components
remain instead fully gapless over a large parameter range; only a very strong
mass imbalance leads to the opening of a spin gap. The spin-gap phase is the
precursor of a crystalline phase occurring for an even stronger mass imbalance.
The fundamental asymmetry of the phase diagram is at odds with recent
theoretical predictions, and can be tested directly via time-of-flight
experiments on trapped cold atoms.Comment: 4 pages, 4 figures + Supplementary Materia
Scaling of excitations in dimerized and frustrated spin-1/2 chains
We study the finite-size behavior of the low-lying excitations of spin-1/2
Heisenberg chains with dimerization and next-to-nearest neighbors interaction,
J_2. The numerical analysis, performed using density-matrix renormalization
group, confirms previous exact diagonalization results, and shows that, for
different values of the dimerization parameter \delta, the elementary triplet
and singlet excitations present a clear scaling behavior in a wide range of
\ell=L/\xi (where L is the length of the chain and \xi is the correlation
length). At J_2=J_2c, where no logarithmic corrections are present, we compare
the numerical results with finite-size predictions for the sine-Gordon model
obtained using Luscher's theory. For small \delta we find a very good agreement
for \ell > 4 or 7 depending on the excitation considered.Comment: 4 pages, 4 eps figures, RevTeX 4 class, same version as in PR
Ab initio analysis of the x-ray absorption spectrum of the myoglobin-carbon monoxide complex: Structure and vibrations
We present a comparison between Fe K-edge x-ray absorption spectra of
carbonmonoxy-myoglobin and its simulation based on density-functional theory
determination of the structure and vibrations and spectral simulation with
multiple-scattering theory. An excellent comparison is obtained for the main
part of the molecular structure without any structural fitting parameters. The
geometry of the CO ligand is reliably determined using a synergic approach to
data analysis. The methodology underlying this approach is expected to be
especially useful in similar situations in which high-resolution data for
structure and vibrations are available.Comment: 13 pages, 3 figure
- …