298 research outputs found

    Scaling and Inverse Scaling in Anisotropic Bootstrap percolation

    Full text link
    In bootstrap percolation it is known that the critical percolation threshold tends to converge slowly to zero with increasing system size, or, inversely, the critical size diverges fast when the percolation probability goes to zero. To obtain higher-order terms (that is, sharp and sharper thresholds) for the percolation threshold in general is a hard question. In the case of two-dimensional anisotropic models, sometimes correction terms can be obtained from inversion in a relatively simple manner.Comment: Contribution to the proceedings of the 2013 EURANDOM workshop Probabilistic Cellular Automata: Theory, Applications and Future Perspectives, equation typo corrected, constant of generalisation correcte

    A remark on the notion of robust phase transitions

    Get PDF
    We point out that the high-q Potts model on a regular lattice at its transition temperature provides an example of a non-robust - in the sense recently proposed by Pemantle and Steif- phase transition

    On the prevalence of non-Gibbsian states in mathematical physics

    Get PDF
    Gibbs measures are the main object of study in equilibrium statistical mechanics, and are used in many other contexts, including dynamical systems and ergodic theory, and spatial statistics. However, in a large number of natural instances one encounters measures that are not of Gibbsian form. We present here a number of examples of such non-Gibbsian measures, and discuss some of the underlying mathematical and physical issues to which they gave rise

    Nonexistence of random gradient Gibbs measures in continuous interface models in d=2d=2

    Get PDF
    We consider statistical mechanics models of continuous spins in a disordered environment. These models have a natural interpretation as effective interface models. It is well known that without disorder there are no interface Gibbs measures in infinite volume in dimension d=2d=2, while there are ``gradient Gibbs measures'' describing an infinite-volume distribution for the increments of the field, as was shown by Funaki and Spohn. In the present paper we show that adding a disorder term prohibits the existence of such gradient Gibbs measures for general interaction potentials in d=2d=2. This nonexistence result generalizes the simple case of Gaussian fields where it follows from an explicit computation. In d=3d=3 where random gradient Gibbs measures are expected to exist, our method provides a lower bound of the order of the inverse of the distance on the decay of correlations of Gibbs expectations w.r.t. the distribution of the random environment.Comment: Published in at http://dx.doi.org/10.1214/07-AAP446 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Aperiodicity in equilibrium systems: Between order and disorder

    Full text link
    Spatial aperiodicity occurs in various models and material s. Although today the most well-known examples occur in the area of quasicrystals, other applications might also be of interest. Here we discuss some issues related to the notion and occurrence of aperiodic order in equilibrium statistical mechanics. In particular, we consider some spectral characterisations,and shortly review what is known about the occurrence of aperiodic order in lattice models at zero and non-zero temperatures. At the end some more speculative connections to the theory of (spin-)glasses are indicated.Comment: Contribution to ICQ12, some corrections and explanatory remarks adde

    Variational description of Gibbs-non-Gibbs dynamical transitions for the Curie-Weiss model

    Get PDF
    We perform a detailed study of Gibbs-non-Gibbs transitions for the Curie-Weiss model subject to independent spin-flip dynamics ("infinite-temperature" dynamics). We show that, in this setup, the program outlined in van Enter, Fern\'andez, den Hollander and Redig can be fully completed, namely that Gibbs-non-Gibbs transitions are equivalent to bifurcations in the set of global minima of the large-deviation rate function for the trajectories of the magnetization conditioned on their endpoint. As a consequence, we show that the time-evolved model is non-Gibbs if and only if this set is not a singleton for some value of the final magnetization. A detailed description of the possible scenarios of bifurcation is given, leading to a full characterization of passages from Gibbs to non-Gibbs -and vice versa- with sharp transition times (under the dynamics Gibbsianness can be lost and can be recovered). Our analysis expands the work of Ermolaev and Kulske who considered zero magnetic field and finite-temperature spin-flip dynamics. We consider both zero and non-zero magnetic field but restricted to infinite-temperature spin-flip dynamics. Our results reveal an interesting dependence on the interaction parameters, including the presence of forbidden regions for the optimal trajectories and the possible occurrence of overshoots and undershoots in the optimal trajectories. The numerical plots provided are obtained with the help of MATHEMATICA.Comment: Key words and phrases: Curie-Weiss model, spin-flip dynamics, Gibbs vs. non-Gibbs, dynamical transition, large deviations, action integral, bifurcation of rate functio

    On the Variational Principle for Generalized Gibbs Measures

    Get PDF
    We present a novel approach to establishing the variational principle for Gibbs and generalized (weak and almost) Gibbs states. Limitations of a thermodynamical formalism for generalized Gibbs states will be discussed. A new class of intuitively weak Gibbs measures is introduced, and a typical example is studied. Finally, we present a new example of a non-Gibbsian measure arising from an industrial application.Comment: To appear in Markov Processes and Related Fields, Proceedings workshop Gibbs-nonGibb

    The Renormalization-Group peculiarities of Griffiths and Pearce: What have we learned?

    Get PDF
    We review what we have learned about the "Renormalization-Group peculiarities" which were discovered about twenty years ago by Griffiths and Pearce, and which questions they asked are still widely open. We also mention some related developments.Comment: Proceedings Marseille meeting on mathematical results in statistical mechanic

    Clarification of the Bootstrap Percolation Paradox

    Full text link
    We study the onset of the bootstrap percolation transition as a model of generalized dynamical arrest. We develop a new importance-sampling procedure in simulation, based on rare events around "holes", that enables us to access bootstrap lengths beyond those previously studied. By framing a new theory in terms of paths or processes that lead to emptying of the lattice we are able to develop systematic corrections to the existing theory, and compare them to simulations. Thereby, for the first time in the literature, it is possible to obtain credible comparisons between theory and simulation in the accessible density range.Comment: 4 pages with 3 figure

    Incoherent boundary conditions and metastates

    Get PDF
    In this contribution we discuss the role which incoherent boundary conditions can play in the study of phase transitions. This is a question of particular relevance for the analysis of disordered systems, and in particular of spin glasses. For the moment our mathematical results only apply to ferromagnetic models which have an exact symmetry between low-temperature phases. We give a survey of these results and discuss possibilities to extend them to some situations where many pure states can coexist. An idea of the proofs as well as the reformulation of our results in the language of Newman-Stein metastates are also presented.Comment: Published at http://dx.doi.org/10.1214/074921706000000176 in the IMS Lecture Notes--Monograph Series (http://www.imstat.org/publications/lecnotes.htm) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore