17 research outputs found

    A Special-Purpose Architecture for Solving the Breakpoint Median Problem

    Get PDF
    In this paper, we describe the design for a co-processor for whole-genome phylogenetic reconstruction. Our current design performs a parallelized breakpoint median computation, which is an expensive component of the overall application. When implemented on a field-programmable gate array (FPGA), our hardware breakpoint median achieves a maximum speedup of 1005times over software. When the coprocessor is used to accelerate the entire reconstruction procedure, we achieve a maximum application speedup of 417times. The results in this paper suggest that FPGA-based acceleration is a promising approach for computationally expensive phylogenetic problems, in spite of the fact that the involved algorithms are based on complex, control-dependent combinatorial optimization

    FPGA Acceleration of Phylogeny Reconstruction for Whole Genome Data

    No full text
    Abstract-In this paper we describe our design and characterization of a co-processor architecture to accelerate median-based phylogenetic reconstruction for generearrangement data. Our current design performs a parallelized version of the breakpoint median computation and achieves an average speedup of 876 for simulated input data having a high evolution rate. After integrating our hardware-based median computation into the GRAPPA toolset, we have achieved an average speedup of 189 over the entire phylogenetic reconstruction procedure. The results in this paper suggest that FPGA-based acceleration is a promising approach for computationally expensive phylogenetic problems that are based on combinatorial optimization. Keywords-FPGA; reconfigurable computing; phylogeny; highperformance; gene-rearrangment; whole-genome; genome analysis I

    Assessment of α-synuclein secretion in mouse and human brain parenchyma

    No full text
    Genetic, biochemical, and animal model studies strongly suggest a central role for α-synuclein in the pathogenesis of Parkinson's disease. α-synuclein lacks a signal peptide sequence and has thus been considered a cytosolic protein. Recent data has suggested that the protein may be released from cells via a non-classical secretory pathway and may therefore exert paracrine effects in the extracellular environment. However, proof that α-synuclein is actually secreted into the brain extracellular space in vivo has not been obtained. We developed a novel highly sensitive ELISA in conjugation with an in vivo microdialysis technique to measure α-synuclein in brain interstitial fluid. We show for the first time that α-synuclein is readily detected in the interstitial fluid of both α-synuclein transgenic mice and human patients with traumatic brain injury. Our data suggest that α-synuclein is physiologically secreted by neurons in vivo. This interstitial fluid pool of the protein may have a role in the propagation of synuclein pathology and progression of Parkinson's disease. © 2011 Emmanouilidou et al

    Embryoid bodies from mouse stem cells express oxytocin receptor, Oct-4 and DAZL

    No full text
    Oxytocin is a nine amino acid peptide involved in a wide spectrum of physiological functions; predominantly those concerning reproduction and differentiation are of interest. Oxytocin receptors are expressed at early developmental stages of mammals, suggesting that oxytocin might be involved in the determination of the germ stem cell line, at the very early stages of mammalian development. In this respect, the proximate aim of the present study was to confirm and further analyze the existence of oxytocin receptors at a very early level of cell commitment, that is, the determination of germ cells derived from embryoid bodies. To achieve our purpose we have cultured mouse embryonic stem cells under conditions inducing formation of embryoid bodies. In this work, ES cells were allowed to aggregate in a novel medium, "Stefanidis medium" from day 0 to day 14 until formed EBs. RNA was isolated from EBs and using RT-PCR we showed that EBs expressed Oct-4, OTR, OT, and DAZL. To demonstrate simultaneous expression immunocytochemistry was preformed, in which EBs showed strong immunoreactivity for both, OTR and DAZL molecular markers. We found that 35% of the cells displayed OTR, using flow cytometry. In addition, this novel medium showed to increase OTR mRNA. We propose, that at least in murine induced embryoid bodies there is simultaneous expression of oxytocin receptors and germ cell markers (DAZL) in many cells (expressing Oct-4). We thus conclude that, the oxytocin might indeed be a molecule playing a leading role in germ cell determination. © 2009 Elsevier Ireland Ltd
    corecore