3,401 research outputs found

    Cosmological Recombination of Lithium and its Effect on the Microwave Background Anisotropies

    Get PDF
    The cosmological recombination history of lithium, produced during Big--Bang nucleosynthesis, is presented using updated chemistry and cosmological parameters consistent with recent cosmic microwave background (CMB) measurements. For the popular set of cosmological parameters, about a fifth of the lithium ions recombine into neutral atoms by a redshift z400z\sim 400. The neutral lithium atoms scatter resonantly the CMB at 6708 \AA and distort its intensity and polarization anisotropies at observed wavelengths around 300μ\sim 300 \mum, as originally suggested by Loeb (2001). The modified anistropies resulting from the lithium recombination history are calculated for a variety of cosmological models and found to result primarily in a suppression of the power spectrum amplitude. Significant modification of the power spectrum occurs for models which assume a large primordial abundance of lithium. While detection of the lithium signal might prove difficult, if offers the possibility of inferring the lithium primordial abundance and is the only probe proposed to date of the large-scale structure of the Universe for z500100z\sim 500-100.Comment: 20 pages, 7 figure

    Measuring the 3D Clustering of Undetected Galaxies Through Cross Correlation of their Cumulative Flux Fluctuations from Multiple Spectral Lines

    Full text link
    We discuss a method for detecting the emission from high redshift galaxies by cross correlating flux fluctuations from multiple spectral lines. If one can fit and subtract away the continuum emission with a smooth function of frequency, the remaining signal contains fluctuations of flux with frequency and angle from line emitting galaxies. Over a particular small range of observed frequencies, these fluctuations will originate from sources corresponding to a series of different redshifts, one for each emission line. It is possible to statistically isolate the fluctuations at a particular redshift by cross correlating emission originating from the same redshift, but in different emission lines. This technique will allow detection of clustering fluctuations from the faintest galaxies which individually cannot be detected, but which contribute substantially to the total signal due to their large numbers. We describe these fluctuations quantitatively through the line cross power spectrum. As an example of a particular application of this technique, we calculate the signal-to-noise ratio for a measurement of the cross power spectrum of the OI(63 micron) and OIII(52 micron) fine structure lines with the proposed Space Infrared Telescope for Cosmology and Astrophysics. We find that the cross power spectrum can be measured beyond a redshift of z=8. Such observations could constrain the evolution of the metallicity, bias, and duty cycle of faint galaxies at high redshifts and may also be sensitive to the reionization history through its effect on the minimum mass of galaxies. As another example, we consider the cross power spectrum of CO line emission measured with a large ground based telescope like CCAT and 21-cm radiation originating from hydrogen in galaxies after reionization with an interferometer similar in scale to MWA, but optimized for post-reionization redshifts.Comment: 21 pages, 6 figures; Replaced with version accepted by JCAP; Added an example of cross correlating CO line emission and 21cm line emission from galaxies after reionizatio

    Ethyl Orthocarbonate [Orthocarbonic acid, tetrahethyl ester]

    Get PDF
    A solution of sodium ethoxide is prepared under nitrogen from 70 g. (3.04 g. atoms) of sodium and 2 l. of absolute ethanol (Note 1) in a 3-l. three-necked flask which is equipped with mechanical stirrer, efficient reflux condenser, dropping funnel, and a thermometer which dips below the level of the liquid in the flask. Chloropicrin (100 g., 0.61 mole) (Note 2) is placed in the dropping funnel, and the stirred solution is heated to 58–60° with a water bath. The chloropicrin is added at a rate of 30–35 drops per minute until the reaction becomes self-sustaining (about 20 minutes), at which point the water bath is removed and the balance of the chloropicrin is added at a rate sufficient to maintain the temperature at 58–60° (Note 3). When the addition, which requires nearly 2 hours, is complete, the stirrer is stopped and the mixture is allowed to stand overnight

    Observing GRBs with EXIST

    Get PDF
    We describe the Energetic X-ray Imaging Survey Telescope EXIST, designed to carry out a sensitive all-sky survey in the 10 keV – 600 keV band. The primary goal of EXIST is to find black holes in the local and distant universe. EXIST also traces cosmic star formation via gamma-ray bursts and gamma-ray lines from radioactive elements ejected by supernovae and novae

    Coherent Neutrino Interactions in a Dense Medium

    Get PDF
    Motivated by the effect of matter on neutrino oscillations (the MSW effect) we study in more detail the propagation of neutrinos in a dense medium. The dispersion relation for massive neutrinos in a medium is known to have a minimum at nonzero momentum p \sim (G_F\rho)/\sqrt{2}. We study in detail the origin and consequences of this dispersion relation for both Dirac and Majorana neutrinos both in a toy model with only neutral currents and a single neutrino flavour and in a realistic "Standard Model" with two neutrino flavours. We find that for a range of neutrino momenta near the minimum of the dispersion relation, Dirac neutrinos are trapped by their coherent interactions with the medium. This effect does not lead to the trapping of Majorana neutrinos.Comment: 28 pages, 6 figures, Latex; minor changes, one reference added; version to appear in Phys. Rev.

    Cosmology with X-ray Cluster Baryons

    Get PDF
    X-ray cluster measurements interpreted with a universal baryon/gas mass fraction can theoretically serve as a cosmological distance probe. We examine issues of cosmological sensitivity for current (e.g. Chandra X-ray Observatory, XMM-Newton) and next generation (e.g. Con-X, XEUS) observations, along with systematic uncertainties and biases. To give competitive next generation constraints on dark energy, we find that systematics will need to be controlled to better than 1% and any evolution in f_gas (and other cluster gas properties) must be calibrated so the residual uncertainty is weaker than (1+z)^{0.03}.Comment: 6 pages, 5 figures; v2: 13 pages, substantial elaboration and reordering, matches JCAP versio

    Constraining Parity Violation in Gravity with Measurements of Neutron-Star Moments of Inertia

    Full text link
    Neutron stars are sensitive laboratories for testing general relativity, especially when considering deviations where velocities are relativistic and gravitational fields are strong. One such deviation is described by dynamical, Chern-Simons modified gravity, where the Einstein-Hilbert action is modified through the addition of the gravitational parity-violating Pontryagin density coupled to a field. This four-dimensional effective theory arises naturally both in perturbative and non-perturbative string theory, loop quantum gravity, and generic effective field theory expansions. We calculate here Chern-Simons modifications to the properties and gravitational fields of slowly spinning neutron stars. We find that the Chern-Simons correction affects only the gravitomagnetic sector of the metric to leading order, thus introducing modifications to the moment of inertia but not to the mass-radius relation. We show that an observational determination of the moment of inertia to an accuracy of 10%, as is expected from near-future observations of the double pulsar, will place a constraint on the Chern-Simons coupling constant of \xi^{1/4} < 5 km, which is at least three-orders of magnitude stronger than the previous strongest bound.Comment: 14 pages, 6 figures, replaced with version accepted for publication in Phys. Rev.

    Measuring the Small-Scale Power Spectrum of Cosmic Density Fluctuations Through 21 cm Tomography Prior to the Epoch of Structure Formation

    Full text link
    The thermal evolution of the cosmic gas decoupled from that of the cosmic microwave background (CMB) at a redshift z~200. Afterwards and before the first stars had formed, the cosmic neutral hydrogen absorbed the CMB flux at its resonant 21cm spin-flip transition. We calculate the evolution of the spin temperature for this transition and the resulting anisotropies that are imprinted on the CMB sky due to linear density fluctuations during this epoch. These anisotropies at an observed wavelength of 10.56[(1+z)/50] meters, contain an amount of information that is orders of magnitude larger than any other cosmological probe. Their detection, although challenging, could tightly constrain any possible running of the spectral index from inflation (as suggested by WMAP), small deviations from Gaussianity, or any significant contribution from neutrinos or warm dark matter to the cosmic mass budget.Comment: 4 pages, 3 figures, accepted for publication in Physical Review Letter

    The Long-Term Future of Extragalactic Astronomy

    Get PDF
    If the current energy density of the universe is indeed dominated by a cosmological constant, then high-redshift sources will remain visible to us only until they reach some finite age in their rest-frame. The radiation emitted beyond that age will never reach us due to the acceleration of the cosmic expansion rate, and so we will never know what these sources look like as they become older. As a source image freezes on a particular time frame along its evolution, its luminosity distance and redshift continue to increase exponentially with observation time. The higher the current redshift of a source is, the younger it will appear as it fades out of sight. For the popular set of cosmological parameters, I show that a source at a redshift z=5-10 will only be visible up to an age of 4-6 billion years. Arguments relating the properties of high-redshift sources to present-day counterparts will remain indirect even if we continue to monitor these sources for an infinite amount of time. These sources will not be visible to us when they reach the current age of the universe.Comment: Phys. Rev. D, in press (2001
    corecore