The cosmological recombination history of lithium, produced during Big--Bang
nucleosynthesis, is presented using updated chemistry and cosmological
parameters consistent with recent cosmic microwave background (CMB)
measurements. For the popular set of cosmological parameters, about a fifth of
the lithium ions recombine into neutral atoms by a redshift z∼400. The
neutral lithium atoms scatter resonantly the CMB at 6708 \AA and distort its
intensity and polarization anisotropies at observed wavelengths around ∼300μm, as originally suggested by Loeb (2001). The modified anistropies
resulting from the lithium recombination history are calculated for a variety
of cosmological models and found to result primarily in a suppression of the
power spectrum amplitude. Significant modification of the power spectrum occurs
for models which assume a large primordial abundance of lithium. While
detection of the lithium signal might prove difficult, if offers the
possibility of inferring the lithium primordial abundance and is the only probe
proposed to date of the large-scale structure of the Universe for z∼500−100.Comment: 20 pages, 7 figure