The thermal evolution of the cosmic gas decoupled from that of the cosmic
microwave background (CMB) at a redshift z~200. Afterwards and before the first
stars had formed, the cosmic neutral hydrogen absorbed the CMB flux at its
resonant 21cm spin-flip transition. We calculate the evolution of the spin
temperature for this transition and the resulting anisotropies that are
imprinted on the CMB sky due to linear density fluctuations during this epoch.
These anisotropies at an observed wavelength of 10.56[(1+z)/50] meters, contain
an amount of information that is orders of magnitude larger than any other
cosmological probe. Their detection, although challenging, could tightly
constrain any possible running of the spectral index from inflation (as
suggested by WMAP), small deviations from Gaussianity, or any significant
contribution from neutrinos or warm dark matter to the cosmic mass budget.Comment: 4 pages, 3 figures, accepted for publication in Physical Review
Letter