12,474 research outputs found

    Holographic RG-flows and Boundary CFTs

    Full text link
    Solutions of (d+1)(d+1)-dimensional gravity coupled to a scalar field are obtained, which holographically realize interface and boundary CFTs. The solution utilizes a Janus-like AdSd\mathrm{AdS}_d slicing ansatz and corresponds to a deformation of the CFT by a spatially-dependent coupling of a relevant operator. The BCFT solutions are singular in the bulk, but physical quantities such as the holographic entanglement entropy can be calculated.Comment: 26 pages, 11 figure

    Deconstructing Superconductivity

    Full text link
    We present a dimensionally deconstructed model of an s-wave holographic superconductor. The 2+1 dimensional model includes multiple charged Cooper pair fields and neutral exciton fields that have interactions governed by hidden local symmetries. We derive AdS/CFT-like relations for the current and charge density in the model, and we analyze properties of the Cooper pair condensates and the complex conductivity.Comment: 24 pages, 10 eps figures. v2: Sign conventions clarified, references adde

    Sub-2 cm/s passivation of silicon surfaces by aprotic solutions

    Get PDF
    Minimizing recombination at semiconductor surfaces is required for the accurate determination of the bulk carrier lifetime. Proton donors, such as hydrofluoric acid and superacids, are well known to provide highly effective short-term surface passivation. We demonstrate here that aprotic solutions based on bis(trifluoromethanesulfonyl)methane (TFSM) in hexane or pentane can also result in excellent passivation of (100)-orientation silicon surfaces. We show that the optimized TFSM-pentane passivation scheme can measure effective lifetimes up to 20 ms, with a surface recombination velocity of 1.7 cm s1 at an excess carrier density of 1015 cm3 . Fitting injection-dependent lifetime curves requires chemical passivation and field effect passivation from a negatively charged layer with a charge density of 1010–1011 q cm2 . The slightly higher recombination velocity of 2.3 cm s1 measured with TFSM-hexane can be explained by a lower charge density in the passivating layer, suggesting that the steric hindrance associated with the solvent size could play a role in the passivation mechanism. Finally, phosphorus nuclear magnetic resonance experiments confirm that TFSM-based solutions have Lewis acidity without being superacids, which opens up opportunities for them to be used in materials systems sensitive to superacidic environments

    Booster Obsolescence and Life Extension (BOLE) for Space Launch System (SLS)

    Get PDF
    A human mission to the moon and Mars is the stated space exploration goal of the United States and the international community. To achieve these goals, NASA is developing the Space Launch System (SLS) and the Orion crew capsule as key elements in the architecture for missions to the moon and Mars. As part of the SLS Booster Obsolescence and Life Extension (BOLE) program, Northrop Grumman Space Systems is working to address booster obsolescence issues in design and manufacturing. The upgraded boosters will also provide increased performance that will benefit future lunar campaigns, science missions, and the eventual Mars campaign

    Making a market for Miscanthus: Can new contract designs solve the biofuel investment hold-up problem?

    Get PDF
    We present designs for optimal contracts to solve the investment hold-up problem for perennial crops for the biofuel industry. A fixed-price contract is ex-ante efficient but renegotiation-proof for a limited range of discount parameters. A perfectly- indexed contract is both renegotiation-proof and ex-post efficient. Provided long-run land prices are stationary, the expected cost for both contracts converges to the long-run expected price of land for a risk-neutral farmer.Biofuels, Miscanthus, contract theory, industrial organization, renegotiation-proof contract, Marketing,

    Advanced Biofuel Production in Louisiana Sugar Mills: an Application of Real Options Analysis

    Get PDF
    In order to more fully study the risks and uncertainty involved in cellulosic ethanol production, we examine a simulated plant in South Louisiana using Real Options Analysisreal options, risk, uncertainty, cellulosic ethanol, energy cane, sorghum, bagasse, simulation, Agribusiness, Agricultural Finance, Production Economics, Resource /Energy Economics and Policy, Risk and Uncertainty, q42, q14, q16, d81, g31,

    Holographic Electroweak Symmetry Breaking from D-branes

    Full text link
    We observe several interesting phenomena in a technicolor-like model of electroweak symmetry breaking based on the D4-D8-D8bar system of Sakai and Sugimoto. The benefit of holographic models based on D-brane configurations is that both sides of the holographic duality are well understood. We find that the lightest technicolor resonances contribute negatively to the Peskin-Takeuchi S-parameter, but heavy resonances do not decouple and lead generically to large, positive values of S, consistent with standard estimates in QCD-like theories. We study how the S parameter and the masses and decay constants of the vector and axial-vector techni-resonances vary over a one-parameter family of D8-brane configurations. We discuss possibilities for the consistent truncation of the theory to the first few resonances and suggest some generic predictions of stringy holographic technicolor models.Comment: REVTeX, 25 pages, 8 eps figures, version published in PR
    • …
    corecore