848 research outputs found

    A Brief Note on the Interaction of an Actuator Cascade with a Singularity

    Get PDF
    We have recently become concerned with making estimates of steady forces that may be exerted between moving blade rows and stationary blade rows or volutes. Our present interest is with time averaged forces for estimation of shaft loads and flow asymmetry forces rather than with transient processes. For this purpose we have adopted the well-known "actuator" model for the blade row in which the flow leaving the row or cascade is assumed to have a constant leaving angle. The disturbances external to this row such as a volute may be represented by distributions of vortex elements as was done for example by Domm and Hergt [1]

    Comparison of calculated and measured pressures on straight and swept-tip model rotor blades

    Get PDF
    Using the quasi-steady, full potential code, ROT22, pressures were calculated on straight and swept tip model helicopter rotor blades at advance ratios of 0.40 and 0.45, and into the transonic tip speed range. The calculated pressures were compared with values measured in the tip regions of the model blades. Good agreement was found over a wide range of azimuth angles when the shocks on the blade were not too strong. However, strong shocks persisted longer than predicted by ROT22 when the blade was in the second quadrant. Since the unsteady flow effects present at high advance ratios primarily affect shock waves, the underprediction of shock strengths is attributed to the simplifying, quasi-steady, assumption made in ROT22

    On the Propagation of Slip Fronts at Frictional Interfaces

    Get PDF
    The dynamic initiation of sliding at planar interfaces between deformable and rigid solids is studied with particular focus on the speed of the slip front. Recent experimental results showed a close relation between this speed and the local ratio of shear to normal stress measured before slip occurs (static stress ratio). Using a two-dimensional finite element model, we demonstrate, however, that fronts propagating in different directions do not have the same dynamics under similar stress conditions. A lack of correlation is also observed between accelerating and decelerating slip fronts. These effects cannot be entirely associated with static local stresses but call for a dynamic description. Considering a dynamic stress ratio (measured in front of the slip tip) instead of a static one reduces the above-mentioned inconsistencies. However, the effects of the direction and acceleration are still present. To overcome this we propose an energetic criterion that uniquely associates, independently on the direction of propagation and its acceleration, the slip front velocity with the relative rise of the energy density at the slip tip.Comment: 15 pages, 6 figure

    Experimental Measurements of Hydrodynamic Stiffness Matrices for a Centrifugal Pump Impeller

    Get PDF
    The objective of the Rotor Force Test Facility at the California Institute of Technology is to artificially orbit the center of rotation of an impeller enclosed within a volute over a range of frequencies from zero to synchronous and to measure the resulting forces on the impeller. This paper reports preliminary data from the first stage experiments in which the shaft is orbited at low frequency. Steady volute forces along with stiffness matrices due to the change in position of the rotor center are measured. Static pressure taps around the volute are used to obtain volute pressure distributions for various fixed positions of the impeller center and for various flow rates. Static pressure forces are calculated from these pressure distributions allowing a more complete analysis of the components of the impeller forces. Comparison is made with various existing theoretical and experimental results

    Real time quaking-induced conversion analysis of cerebrospinal fluid in sporadic Creutzfeldt-Jakob disease

    Get PDF
    OBJECTIVE: Current cerebrospinal fluid (CSF) tests for sporadic Creutzfeldt-Jakob disease (sCJD) are based on the detection of surrogate markers of neuronal damage such as CSF 14-3-3 which are not specific for sCJD. A number of prion protein conversion assays have been developed, including real-time quaking induced conversion (RT-QuIC). The objective of this study is to investigate whether CSF RT-QuIC analysis could be used as a diagnostic test in sCJD. METHODS: An exploratory study was undertaken which analysed 108 CSF samples from patients with neuropathologically confirmed sCJD or from control patients. Of the 108 CSF samples 56 were from sCJD patients (30 female, 26 male, aged 31–84 years; 62.3 ± 13.5 years) and 52 were from control patients (26 female, 26 male, aged 43–84 years; 67.8 ± 10.4 years). A confirmatory group of 118 patients were subsequently examined which consisted of 67 cases of neuropathologically confirmed sCJD (33 female, 34 male, aged 39–82 years; 67.5 ± 9.0 years) and 51 control cases (26 female, 25 male, aged 36–87 years; 63.5 ± 11.6 years). RESULTS: The exploratory study showed that RT-QuIC analysis had a sensitivity of 91% and a specificity of 98% for the diagnosis of sCJD. These results were confirmed in the confirmatory study which showed that CSF RT-QuIC analysis had a sensitivity and specificity of 87% and 100% respectively. INTERPRETATION: This study shows that CSF RT-QuIC analysis has the potential to be a more specific diagnostic test for sCJD than current CSF tests

    Anti-Prion Activity of Brilliant Blue G

    Get PDF
    BACKGROUND: Prion diseases are fatal neurodegenerative disorders with no effective therapy currently available. Accumulating evidence has implicated over-activation of P2X7 ionotropic purinergic receptor (P2X7R) in the progression of neuronal loss in several neurodegenerative diseases. This has led to the speculation that simultaneous blockade of this receptor and prion replication can be an effective therapeutic strategy for prion diseases. We have focused on Brilliant Blue G (BBG), a well-known P2X7R antagonist, possessing a chemical structure expected to confer anti-prion activity and examined its inhibitory effect on the accumulation of pathogenic isoforms of prion protein (PrPres) in a cellular and a mouse model of prion disease in order to determine its therapeutic potential. PRINCIPAL FINDINGS: BBG prevented PrPres accumulation in infected MG20 microglial and N2a neural cells at 50% inhibitory concentrations of 14.6 and 3.2 µM, respectively. Administration of BBG in vivo also reduced PrPres accumulation in the brains of mice with prion disease. However, it did not appear to alleviate the disease progression compared to the vehicle-treated controls, implying a complex role of P2X7R on the neuronal degeneration in prion diseases. SIGNIFICANCE: These results provide novel insights into the pathophysiology of prion diseases and have important implications for the treatment
    • …
    corecore