3,044 research outputs found

    Study of onboard expert systems to augment space shuttle and space station autonomy

    Get PDF
    The feasibility of onboard crew activity planning was examined. The use of expert systems technology to aid crewmembers in locating stowed equipment was also investigated. The crew activity planning problem, along with a summary of past and current research efforts, was discussed in detail. The requirements and specifications used to develop the crew activity planning system was also defined. The guidelines used to create, develop, and operate the MFIVE Crew Scheduler and Logistics Clerk were discussed. Also discussed is the mathematical algorithm, used by the MFIVE Scheduler, which was developed to aid in optimal crew activity planning

    Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS), phase 2. Volume 1: Telepresence technology base development

    Get PDF
    The field of telepresence is defined, and overviews of those capabilities that are now available, and those that will be required to support a NASA telepresence effort are provided. Investigation of NASA's plans and goals with regard to telepresence, extensive literature search for materials relating to relevant technologies, a description of these technologies and their state of the art, and projections for advances in these technologies over the next decade are included. Several space projects are examined in detail to determine what capabilities are required of a telepresence system in order to accomplish various tasks, such as servicing and assembly. The key operational and technological areas are identified, conclusions and recommendations are made for further research, and an example developmental program is presented, leading to an operational telepresence servicer

    Space applications of Automation, Robotics And Machine Intelligence Systems (ARAMIS). Volume 3, phase 2: Executive summary

    Get PDF
    The field of telepresence is defined, and overviews of those capabilities that are now available, and those that will be required to support a NASA telepresence effort are provided. Investigation of NASA's plans and goals with regard to telepresence, extensive literature search for materials relating to relevant technologies, a description of these technologies and their state of the art, and projections for advances in these technologies are included. Several space projects are examined in detail to determine what capabilities are required of a telepresence system in order to accomplish various tasks, such as servicing and assembly. The key operational and technological areas are identified, conclusions and recommendations are made for further research, and an example developmental program leading to an operational telepresence servicer is presented

    An investigation of the transient thermal analysis of spur gears

    Get PDF
    A finite element computer program is developed for evaluating the transient behavior of surface temperature in high performance spur gears. The time dimension is implemented using two and three point finite difference schemes. The different schemes are provided for the purpose of numerical stability and convergence studies. A detailed explanation of the gear cooling process leading to the establishment of a modified Blok model is also included. Other conventional models for approximating the heat transfer coefficients are available for comparison. Preliminary results are given showing snap shots of gear temperature contours at the initial stages of tooth engagement

    Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS), phase 2. Volume 2: Telepresence project applications

    Get PDF
    The field of telepresence is defined and overviews of those capabilities that are now available, and those that will be required to support a NASA telepresence effort are provided. Investigation of NASA' plans and goals with regard to telepresence, extensive literature search for materials relating to relevant technologies, a description of these technologies and their state of the art, and projections for advances in these technologies over the next decade are included

    Parameter studies of gear cooling using an automatic finites element mesh generator

    Get PDF
    The range of accuracies achieved in the gear tooth temperature using an automatic finite element mesh generator were investigated. Gear web contribution to the gear cooling process was studied by introducing a varying size hole at the center of the gear because of the versatility of program TARG in allowing different heat transfer coefficients in different areas of the gear tooth. A study was carried out to evaluate the contribution of the loaded and unloaded faces as well as the top and bottom lands. A general purpose two-dimensional finite element preprocessor ATOGEN has been developed for automatic generation of a finite element mesh over a pie-shaped sector of a gear. The program was used for facilitating the input to an upgraded version of a previously developed program for the thermal analysis of running gears (TARG). The latter program determined the steady state temperature distribution throughout the specified gear. The automatic mesh generator program includes a band width minimization routine for reducing computer cost

    The role of thermal and lubricant boundary layers in the transient thermal analysis of spur gears

    Get PDF
    An improved convection heat-transfer model has been developed for the prediction of the transient tooth surface temperature of spur gears. The dissipative quality of the lubricating fluid is shown to be limited to the capacity extent of the thermal boundary layer. This phenomenon can be of significance in the determination of the thermal limit of gears accelerating to the point where gear scoring occurs. Steady-state temperature prediction is improved considerably through the use of a variable integration time step that substantially reduces computer time. Computer-generated plots of temperature contours enable the user to animate the propagation of the thermal wave as the gears come into and out of contact, thus contributing to better understanding of this complex problem. This model has a much better capability at predicting gear-tooth temperatures than previous models

    Distribution of Aromatic Compounds in Coastal Bermudagrass Cell Walls Using Ultraviolet Absorption Scanning Microspectrophotometry

    Get PDF
    The distribution of aromatic constituents, including lignin , in the leaf cell walls of Coastal hermudagrass (Cynodon dacrylon (L.) Pers.) was investigated using scanning ultraviolet (UV) microspectrophotometry. Leaf blade sections and individual tissue types were scanned at three wavelengths representing the absorbance maxima (318, 287 and 250 nm) of aromatic constituents present in bermudagrass leaves. The measured absorbance data were printed in a geometric arrangement to produce an image of the distribution and amount of aromatic constituents among and within cell wall types which vary in digestibility . Differences in absorbance were observed among cell wall types, among walls of the same cell type, and at different sites in individual cell walls. Scans of the mid vein at lOX magnification showed that various tissues and cells could be distinguished on the basis of U V absorbance. The abaxial sclerenchyma and mestome sheath gave the highest absorbance followed by those of the epidermis and parenchyma bundle sheath . The lowest levels of absorbance were observed in the mesophyll, parenchyma tissue and xylem tissue. Images produced from scanning individual cell walls at lOOx magnification showed the heterogeneous nature of aromatic constituents within a cell wall. Varying the wavelength resulted in similar but not identical images, indicating that variations in the chemical structures of aromatic constituents in the cell wall can he detected using this technique

    Development and Applications of a Self-Contained, Non-Invasive EVA Joint Angle and Muscle Fatigue Sensor System

    Get PDF
    The University of Maryland Space Systems Laboratory, as a participant in NASA's INSTEP program, is developing a non-invasive, self-contained sensor system which can provide quantitative measurements of joint angles and muscle fatigue in the hand and forearm. The goal of this project is to develop a system with which hand/forearm motion and fatigue metrics can be determined in various terrestrial and zero-G work environments. A preliminary study of the prototype sensor systems and data reduction techniques for the fatigue measurement system are presented. The sensor systems evaluated include fiberoptics, used to measure joint angle, surface electrodes, which measure the electrical signals created in muscle as it contracts; microphones, which measure the noise made by contracting muscle; and accelerometers, which measure the lateral muscle acceleration during contraction. The prototype sensor systems were used to monitor joint motion of the metacarpophalangeal joint and muscle fatigue in flexor digitorum superficialis and flexor carpi ulnaris in subjects performing gripping tasks. Subjects were asked to sustain a 60-second constant-contraction (isometric) exercise and subsequently to perform a repetitive handgripping task to failure. Comparison of the electrical and mechanical signals of the muscles during the different tasks will be used to evaluate the applicability of muscle signal measurement techniques developed for isometric contraction tasks to fatigue prediction in quasi-dynamic exercises. Potential data reduction schemes are presented
    corecore