856 research outputs found
Quantum Circuit Simplification and Level Compaction
Quantum circuits are time dependent diagrams describing the process of
quantum computation. Usually, a quantum algorithm must be mapped into a quantum
circuit. Optimal synthesis of quantum circuits is intractable and heuristic
methods must be employed. With the use of heuristics, the optimality of
circuits is no longer guaranteed. In this paper, we consider a local
optimization technique based on templates to simplify and reduce the depth of
non-optimal quantum circuits. We present and analyze templates in the general
case, and provide particular details for the circuits composed of NOT, CNOT and
controlled-sqrt-of-NOT gates. We apply templates to optimize various common
circuits implementing multiple control Toffoli gates and quantum Boolean
arithmetic circuits. We also show how templates can be used to compact the
number of levels of a quantum circuit. The runtime of our implementation is
small while the reduction in number of quantum gates and number of levels is
significant.Comment: 13 pages, 6 figures. New author, improved presentation, more result
Techniques for the Synthesis of Reversible Toffoli Networks
This paper presents novel techniques for the synthesis of reversible networks
of Toffoli gates, as well as improvements to previous methods. Gate count and
technology oriented cost metrics are used. Our synthesis techniques are
independent of the cost metrics. Two new iterative synthesis procedure
employing Reed-Muller spectra are introduced and shown to complement earlier
synthesis approaches. The template simplification suggested in earlier work is
enhanced through introduction of a faster and more efficient template
application algorithm, updated (shorter) classification of the templates, and
presentation of the new templates of sizes 7 and 9. A novel ``resynthesis''
approach is introduced wherein a sequence of gates is chosen from a network,
and the reversible specification it realizes is resynthesized as an independent
problem in hopes of reducing the network cost. Empirical results are presented
to show that the methods are effective both in terms of the realization of all
3x3 reversible functions and larger reversible benchmark specifications.Comment: 20 pages, 5 figure
Verbetering van de lichtonderschepping in een tomatengewas door aanpassing van de rijstructuur: Effecten van de rijstructuur op lichtverdeling, fotosynthese en productie
Doel van dit project was te onderzoeken wat het effect is van de rijstructuur op de lichtverdeling en fotosynthese van een tomatengewas, en de effecten daarvan op de productie. Ook werd gekeken of de bladstand en de fotosynthesecapaciteit van de bladeren zich aanpassen aan wijzigende lichtverdeling. Tevens werd de hypothese getest of alternatieve vormen van tussenplanten zouden leiden tot lagere verdamping en dus tot energiebesparing. Verder is gekeken naar het effect op productie van twee substraten, namelijk kokosmatten type ‘Profit’ van Van der Knaap, en steenwolmat type ‘Master Dry’ van Grodan
Constructive and destructive use of compilers in elliptic curve cryptography
Although cryptographic software implementation is often performed by expert programmers, the range of performance and security driven options, as well as more mundane software engineering issues, still make it a challenge. The use of domain specific language and compiler techniques to assist in description and optimisation of cryptographic software is an interesting research challenge. In this paper we investigate two aspects of such techniques, focusing on Elliptic Curve Cryptography (ECC) in particular. Our constructive results show that a suitable language allows description of ECC based software in a manner close to the original mathematics; the corresponding compiler allows automatic production of an executable whose performance is competitive with that of a hand-optimised implementation. In contrast, we study the worrying potential for naïve compiler driven optimisation to render cryptographic software insecure. Both aspects of our work are set within the context of CACE, an ongoing EU funded project on this general topic
Transfer RNA-derived small RNAs in the cancer transcriptome
The cellular lifetime includes stages such as differentiation, proliferation, division, senescence and apoptosis.These stages are driven by a strictly ordered process of transcription dynamics. Molecular disruption to RNA polymerase assembly, chromatin remodelling and transcription factor binding through to RNA editing, splicing, post-transcriptional regulation and ribosome scanning can result in significant costs arising from genome instability. Cancer development is one example of when such disruption takes place. RNA silencing is a term used to describe the effects of post-transcriptional gene silencing mediated by a diverse set of small RNA molecules. Small RNAs are crucial for regulating gene expression and microguarding genome integrity.RNA silencing studies predominantly focus on small RNAs such as microRNAs, short-interfering RNAs and piwi-interacting RNAs. We describe an emerging renewal of inter-est in a‘larger’small RNA, the transfer RNA (tRNA).Precisely generated tRNA-derived small RNAs, named tRNA halves (tiRNAs) and tRNA fragments (tRFs), have been reported to be abundant with dysregulation associated with cancer. Transfection of tiRNAs inhibits protein translation by displacing eukaryotic initiation factors from messenger RNA (mRNA) and inaugurating stress granule formation.Knockdown of an overexpressed tRF inhibits cancer cell proliferation. Recovery of lacking tRFs prevents cancer metastasis. The dual oncogenic and tumour-suppressive role is typical of functional small RNAs. We review recent reports on tiRNA and tRF discovery and biogenesis, identification and analysis from next-generation sequencing data and a mechanistic animal study to demonstrate their physiological role in cancer biology. We propose tRNA-derived small RNA-mediated RNA silencing is an innate defence mechanism to prevent oncogenic translation. We expect that cancer cells are percipient to their ablated control of transcription and attempt to prevent loss of genome control through RNA silencing
Strong Secrecy for Multiple Access Channels
We show strongly secret achievable rate regions for two different wiretap
multiple-access channel coding problems. In the first problem, each encoder has
a private message and both together have a common message to transmit. The
encoders have entropy-limited access to common randomness. If no common
randomness is available, then the achievable region derived here does not allow
for the secret transmission of a common message. The second coding problem
assumes that the encoders do not have a common message nor access to common
randomness. However, they may have a conferencing link over which they may
iteratively exchange rate-limited information. This can be used to form a
common message and common randomness to reduce the second coding problem to the
first one. We give the example of a channel where the achievable region equals
zero without conferencing or common randomness and where conferencing
establishes the possibility of secret message transmission. Both coding
problems describe practically relevant networks which need to be secured
against eavesdropping attacks.Comment: 55 page
On the automatic construction of indistinguishable operations
An increasingly important design constraint for software running
on ubiquitous computing devices is security, particularly against
physical methods such as side-channel attack. One well studied methodology
for defending against such attacks is the concept of indistinguishable
functions which leak no information about program control
flow since all execution paths are computationally identical. However,
constructing such functions by hand becomes laborious and error prone
as their complexity increases. We investigate techniques for automating
this process and find that effective solutions can be constructed with
only minor amounts of computational effort.Fundação para a Ciência e Tecnologia - SFRH/BPD/20528/2004
- …
