171 research outputs found

    Human intestinal anion exchanger isoforms: expression, distribution, and membrane localization

    Get PDF
    AbstractA family of anion exchangers (AEs) including AE1, AE2 and AE3 has been described. AE3 gene has been shown to encode two alternatively spliced isoforms termed as bAE3 (brain subtype) and cAE3 (cardiac subtype). The identity of the AE(s) involved in the human intestinal NaCl absorption is not fully understood. Current studies were undertaken to identify the AE isoforms expressed in the human intestine, to define their regional and vertical axis (crypt vs. surface cells) distribution, and to elucidate their membrane localization in the epithelial cells along the entire length of the human intestine. Our studies utilizing reverse transcription (RT)-PCR with total RNA extracted from pinch biopsies from various regions of the human intestine demonstrate that AE2 and bAE3 but not AE1 or cAE3 were expressed in all the regions of the human intestine. Utilizing in situ RT-PCR, we demonstrated that the message of AE2 was expressed throughout the vertical surface–crypt axis of the colon. Our Western blotting studies demonstrated that AE2 and bAE3 are localized to the basolateral but not the apical membranes of the intestinal epithelial cells from the human ileum and colon. In conclusion, our results demonstrated that in the human intestine, AE2 and bAE3, but not AE1 or cAE3, are expressed throughout the tract with the highest expression in the colon compared to the ileum and jejunum. Both the isoforms were found to be localized to the basolateral but not the apical membranes of the epithelial cells. We speculate that, in the human intestine, AE2 and bAE3 may be the ‘housekeeping’ isoforms, and the apical AE, the potential candidate for chloride absorption, remains to be identified

    Familial adenomatous polyposis is associated with a marked decrease in alkaline sphingomyelinase activity: a key factor to the unrestrained cell proliferation?

    Get PDF
    The hydrolysis of sphingomyelin generates key molecules regulating cell growth and inducing apoptosis. Data from animal cancer models support an inhibitory role for this pathway in the malignant transformation of the colonic mucosa. In the intestinal tract, a sphingomyelinase with an optimum alkaline pH has been identified. We recently found that the activity of alkaline sphingomyelinase is significantly decreased in colorectal adenocarcinomas, indicating a potential anticarcinogenic role of this enzyme. To further examine whether the reduction of sphingomyelinase is present already in the premalignant state of neoplastic transformation, we measured sphingomyelinase activities in patients with familial adenomatous polyposis (FAP) and in sporadic colorectal tubulovillous adenomas. Tissue samples were taken from adenomas and surrounding macroscopically normal mucosa from 11 FAP patients operated with ileorectal anastomosis, from three FAP patients with intact colon, from 13 patients with sporadic colorectal adenomas and from 12 controls. Activities of acid, neutral and alkaline sphingomyelinase were measured together with alkaline phosphatase. In FAP adenoma tissue, alkaline sphingomyelinase activity was reduced by 90% compared to controls (P < 0.0001), acid sphingomyelinase by 66% (P < 0.01) and neutral sphingomyelinase by 54% (P < 0.05). Similar reductions were found in the surrounding mucosa. In sporadic adenoma tissue, only alkaline sphingomyelinase was reduced significantly, by 57% (P < 0.05). Alkaline phosphatase was not changed in FAP adenomas, but decreased in the sporadic adenomas. We conclude that the markedly reduced levels of alkaline sphingomyelinase activities in FAP adenomas and in the surrounding mucosa may be a pathogenic factor that can lead to unrestrained cell proliferation and neoplastic transformation. © 1999 Cancer Research Campaig

    Vaccination against nonmutated neoantigens induced in recurrent and future tumors

    Get PDF
    Vaccination of patients against neoantigens expressed in concurrent tumors, recurrent tumors, or tumors developing in individuals at risk of cancer is posing major challenges in terms of which antigens to target and is limited to patients expressing neoantigens in their tumors. Here, we describe a vaccination strategy against antigens that were induced in tumor cells by downregulation of the peptide transporter associated with antigen processing (TAP). Vaccination against TAP downregulation-induced antigens was more effective than vaccination against mutation-derived neoantigens, was devoid of measurable toxicity, and inhibited the growth of concurrent and future tumors in models of recurrence and premalignant disease. Human CD8(+) T cells stimulated with TAP(low) dendritic cells elicited a polyclonal T-cell response that recognized tumor cells with experimentally reduced TAP expression. Vaccination against TAP downregulation-induced antigens overcomes the main limitations of vaccinating against mostly unique tumor-resident neoantigens and could represent a simpler vaccination strategy that will be applicable to most patients with cancer.Experimental cancer immunology and therap

    Minnelide effectively eliminates CD133+ side population in pancreatic cancer

    Get PDF
    BACKGROUND: Pancreatic Ductal Adenocarcinoma (PDAC) is a devastating disease hallmarked by limited patient survival. Resistance to chemotherapy, a major cause of treatment failure in PDAC patients, is often attributed to Cancer Stem Cells (CSCs). Pancreatic CSCs are a small subset of quiescent cells within a tumor represented by surface markers like CD133. These cells are responsible not only for tumor recurrence, but also poor prognosis based on their “stem-like” characteristics. At present, conventional therapy is directed towards rapidly dividing PDAC cells and thus fails to target the CSC population. METHODS: MIA PaCa-2, S2-013 and AsPC-1 were treated with 12.5 nM triptolide (12 T cells) for 7 days. The surviving cells were recovered briefly in drug-free growth media and then transferred to Cancer Stem cell Media (CSM). As a control, untreated cells were also transferred to CSM media (CSM). The 12 T and CSM cells were tested for stemness properties using RNA and protein markers. Low numbers of CSM and 12 T cells were implanted subcutaneously in athymic nude mice to study their tumorigenic potential. 12 T and CSM cells were sorted for CD133 expression and assayed for their colony forming ability and sphere forming ability. Invasiveness of 12 T cells, CSM and MIA PaCa-2 were compared using Boyden chamber assays. RESULTS: Treated 12 T cells displayed increased expression of the surface marker CD133 and the drug transporter ABCG2 compared to untreated cells (CSM cells). Both 12 T and CSM cells formed subcutaneous tumors in mice confirming their tumor-initiating properties. When tested for invasion, 12 T cells had increased invasiveness compared to CSM cells. CD133(+) cells in both CSM and 12 T showed greater colony and sphere forming ability compared to CD133(−) cells from each group. Consistent with these data, when injected subcutaneously in mice, CD133(−) cells from CSM or 12 T did not form any tumors whereas CD133(+) cells from both groups showed tumor formation at a very low cell number. Despite pre-exposure to triptolide in 12 T CD133(+) cells, treatment of tumors formed by these cells with Minnelide, a triptolide pro-drug, showed significant tumor regression. CONCLUSION: Our results indicated that triptolide enhanced and enriched the “stemness” in the PDAC cell lines at a low dose of 12.5 nM, but also resulted in the regression of tumors derived from these cells. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12943-015-0470-6) contains supplementary material, which is available to authorized users

    Risk factors for myocardial infarction among low socioeconomic status South Indian population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As longevity increases, cases of myocardial infarction (MI) are likely to be more. Cardiovascular disease (CVD) is a major global health problem reaching epidemic proportions in the Indian subcontinent, also among low socio-economic status (SES) and thin individuals.</p> <p>Objectives</p> <p>The present study was undertaken to elicit risk factors for MI among low SES Southern Indians and to find out its association with body mass index (BMI).</p> <p>Materials and methods</p> <p>A case-control study of patients with MI matched against healthy control subjects was carried out in a tertiary care teaching hospital. Standard methods were followed to elicit risk factors and BMI. Chi-square and Fishers exact test for categorical versus categorical, to show relationship with risk factors were analyzed.</p> <p>Results</p> <p>A total of 949 patients (male (M) = 692 and post menopausal female (F) = 257) and 611 age and sex matched healthy controls were included. In our study, BMI was below 23 in 48.2% of patients and below 21 in 22.5%. The risk of developing MI was significantly more in males (odds ratio (OR) = 3.3, 95% confidence interval (C.I.) = 2.69-4.13), among females with post-menopausal duration (PMD) of more than or equal to 3 years (OR = 9.27, 95% C.I. = 6.36-13.50) and in those with BMI less than 23 with one or other risk factors (P = 0.002, OR = 1.38, 95% C.I. = 1.13-1.70).</p> <p>Conclusion</p> <p>BMI cannot be considered as a lone independent risk factor, as the study population had low BMI but had one or more modifiable risk factors. It would be advisable to keep BMI at least 21 kg/m<sup>2 </sup>for screening program. Health education on life style modification and programs to diagnose and control diabetes and hypertension have to be initiated at community level in order to reduce the occurrence.</p

    Diagnostic strategy and timing of intervention in infected necrotizing pancreatitis: an international expert survey and case vignette study

    Get PDF
    AbstractBackgroundThe optimal diagnostic strategy and timing of intervention in infected necrotizing pancreatitis is subject to debate. We performed a survey on these topics amongst a group of international expert pancreatologists.MethodsAn online survey including case vignettes was sent to 118 international pancreatologists. We evaluated the use and timing of fine needle aspiration (FNA), antibiotics, catheter drainage and (minimally invasive) necrosectomy.ResultsThe response rate was 74% (N = 87). None of the respondents use FNA routinely, 85% selectively and 15% never. Most respondents (87%) use a step-up approach in patients with infected necrosis. Walled-off necrosis (WON) is considered a prerequisite for endoscopic drainage and percutaneous drainage by 66% and 12%, respectively. After diagnosing infected necrosis, 55% routinely postpone invasive interventions, whereas 45% proceed immediately to intervention. Lack of consensus about timing of intervention was apparent on day 14 with proven infected necrosis (58% intervention vs. 42% non-invasive) as well as on day 20 with only clinically suspected infected necrosis (59% intervention vs. 41% non-invasive).DiscussionThe step-up approach is the preferred treatment strategy in infected necrotizing pancreatitis amongst expert pancreatologists. There is no uniformity regarding the use of FNA and timing of intervention in the first 2–3 weeks of infected necrotizing pancreatitis

    Synthetic Nanoparticles for Vaccines and Immunotherapy

    Get PDF
    The immune system plays a critical role in our health. No other component of human physiology plays a decisive role in as diverse an array of maladies, from deadly diseases with which we are all familiar to equally terrible esoteric conditions: HIV, malaria, pneumococcal and influenza infections; cancer; atherosclerosis; autoimmune diseases such as lupus, diabetes, and multiple sclerosis. The importance of understanding the function of the immune system and learning how to modulate immunity to protect against or treat disease thus cannot be overstated. Fortunately, we are entering an exciting era where the science of immunology is defining pathways for the rational manipulation of the immune system at the cellular and molecular level, and this understanding is leading to dramatic advances in the clinic that are transforming the future of medicine.1,2 These initial advances are being made primarily through biologic drugs– recombinant proteins (especially antibodies) or patient-derived cell therapies– but exciting data from preclinical studies suggest that a marriage of approaches based in biotechnology with the materials science and chemistry of nanomaterials, especially nanoparticles, could enable more effective and safer immune engineering strategies. This review will examine these nanoparticle-based strategies to immune modulation in detail, and discuss the promise and outstanding challenges facing the field of immune engineering from a chemical biology/materials engineering perspectiveNational Institutes of Health (U.S.) (Grants AI111860, CA174795, CA172164, AI091693, and AI095109)United States. Department of Defense (W911NF-13-D-0001 and Awards W911NF-07-D-0004
    corecore