1,200 research outputs found

    Experimental investigation and analysis of two sources of nozzle-thrust misalignment

    Get PDF
    Asymmetry of nozzle's throat produces oscillatory type net side-force axial profile. Using mean values of localized static pressure and Mach number, scaling laws for flat-plate supersonic flow over protrusion are applied to nozzle expansion cone irregularities to give approximate indication of perturbed-pressure profiles and induced side forces

    Cold-flow experimental investigation and analysis of two sources of nozzle thrust misalignment

    Get PDF
    Cold flow investigation and analysis of two nozzle thrust misalignmen

    The Otto-engine-equivalent vehicle concept

    Get PDF
    A vehicle comparison methodology based on the Otto-Engine Equivalent (OEE) vehicle concept is described. As an illustration of this methodology, the concept is used to make projections of the fuel economy potential of passenger cars using various alternative power systems. Sensitivities of OEE vehicle results to assumptions made in the calculational procedure are discussed. Factors considered include engine torque boundary, rear axle ratio, performance criteria, engine transient response, and transmission shift logic

    Efficient CRISPR-rAAV engineering of endogenous genes to study protein function by allele-specific RNAi.

    Get PDF
    Gene knockout strategies, RNAi and rescue experiments are all employed to study mammalian gene function. However, the disadvantages of these approaches include: loss of function adaptation, reduced viability and gene overexpression that rarely matches endogenous levels. Here, we developed an endogenous gene knockdown/rescue strategy that combines RNAi selectivity with a highly efficient CRISPR directed recombinant Adeno-Associated Virus (rAAV) mediated gene targeting approach to introduce allele-specific mutations plus an allele-selective siRNA Sensitive (siSN) site that allows for studying gene mutations while maintaining endogenous expression and regulation of the gene of interest. CRISPR/Cas9 plus rAAV targeted gene-replacement and introduction of allele-specific RNAi sensitivity mutations in the CDK2 and CDK1 genes resulted in a >85% site-specific recombination of Neo-resistant clones versus ∼8% for rAAV alone. RNAi knockdown of wild type (WT) Cdk2 with siWT in heterozygotic knockin cells resulted in the mutant Cdk2 phenotype cell cycle arrest, whereas allele specific knockdown of mutant CDK2 with siSN resulted in a wild type phenotype. Together, these observations demonstrate the ability of CRISPR plus rAAV to efficiently recombine a genomic locus and tag it with a selective siRNA sequence that allows for allele-selective phenotypic assays of the gene of interest while it remains expressed and regulated under endogenous control mechanisms

    Site Selective Antibody-Oligonucleotide Conjugation via Microbial Transglutaminase.

    Get PDF
    Nucleic Acid Therapeutics (NATs), including siRNAs and AntiSense Oligonucleotides (ASOs), have great potential to drug the undruggable genome. Targeting siRNAs and ASOs to specific cell types of interest has driven dramatic improvement in efficacy and reduction in toxicity. Indeed, conjugation of tris-GalNAc to siRNAs and ASOs has shown clinical efficacy in targeting diseases driven by liver hepatocytes. However, targeting non-hepatic diseases with oligonucleotide therapeutics has remained problematic for several reasons, including targeting specific cell types and endosomal escape. Monoclonal antibody (mAb) targeting of siRNAs and ASOs has the potential to deliver these drugs to a variety of specific cell and tissue types. However, most conjugation strategies rely on random chemical conjugation through lysine or cysteine residues resulting in conjugate heterogeneity and a distribution of Drug:Antibody Ratios (DAR). To produce homogeneous DAR-2 conjugates with two siRNAs per mAb, we developed a novel two-step conjugation procedure involving microbial transglutaminase (MTGase) tagging of the antibody C-terminus with an azide-functionalized linker peptide that can be subsequently conjugated to dibenzylcyclooctyne (DBCO) bearing oligonucleotides through azide-alkyne cycloaddition. Antibody-siRNA (and ASO) conjugates (ARCs) produced using this strategy are soluble, chemically defined targeted oligonucleotide therapeutics that have the potential to greatly increase the number of targetable cell types

    Higher cost of implementing Xpert(®) MTB/RIF in Ugandan peripheral settings: implications for cost-effectiveness.

    Get PDF
    SETTING: Initial cost-effectiveness evaluations of Xpert(®) MTB/RIF for tuberculosis (TB) diagnosis have not fully accounted for the realities of implementation in peripheral settings. OBJECTIVE: To evaluate costs and diagnostic outcomes of Xpert testing implemented at various health care levels in Uganda. DESIGN: We collected empirical cost data from five health centers utilizing Xpert for TB diagnosis, using an ingredients approach. We reviewed laboratory and patient records to assess outcomes at these sites and10 sites without Xpert. We also estimated incremental cost-effectiveness of Xpert testing; our primary outcome was the incremental cost of Xpert testing per newly detected TB case. RESULTS: The mean unit cost of an Xpert test was US21basedonameanmonthlyvolumeof54testspersite,althoughunitcostvariedwidely(US21 based on a mean monthly volume of 54 tests per site, although unit cost varied widely (US16-58) and was primarily determined by testing volume. Total diagnostic costs were 2.4-fold higher in Xpert clinics than in non-Xpert clinics; however, Xpert only increased diagnoses by 12%. The diagnostic costs of Xpert averaged US119pernewlydetectedTBcase,butwereashighasUS119 per newly detected TB case, but were as high as US885 at the center with the lowest volume of tests. CONCLUSION: Xpert testing can detect TB cases at reasonable cost, but may double diagnostic budgets for relatively small gains, with cost-effectiveness deteriorating with lower testing volumes

    Designing and Evaluating Interventions to Halt the Transmission of Tuberculosis.

    Get PDF
    To reduce the incidence of tuberculosis, it is insufficient to simply understand the dynamics of tuberculosis transmission. Rather, we must design and rigorously evaluate interventions to halt transmission, prioritizing those interventions most likely to achieve population-level impact. Synergy in reducing tuberculosis transmission may be attainable by combining interventions that shrink the reservoir of latent Mycobacterium tuberculosis infection (preventive therapy), shorten the time between disease onset and treatment initiation (case finding and diagnosis), and prevent transmission in key settings, such as the built environment (infection control). In evaluating efficacy and estimating population-level impact, cluster-randomized trials and mechanistic models play particularly prominent roles. Historical and contemporary evidence suggests that effective public health interventions can halt tuberculosis transmission, but an evidence-based approach based on knowledge of local epidemiology is necessary for success. We provide a roadmap for designing, evaluating, and modeling interventions to interrupt the process of transmission that fuels a diverse array of tuberculosis epidemics worldwide
    corecore