163 research outputs found

    {\em Ab initio} Quantum Monte Carlo simulation of the warm dense electron gas in the thermodynamic limit

    Get PDF
    We perform \emph{ab initio} quantum Monte Carlo (QMC) simulations of the warm dense uniform electron gas in the thermodynamic limit. By combining QMC data with linear response theory we are able to remove finite-size errors from the potential energy over the entire warm dense regime, overcoming the deficiencies of the existing finite-size corrections by Brown \emph{et al.}~[PRL \textbf{110}, 146405 (2013)]. Extensive new QMC results for up to N=1000N=1000 electrons enable us to compute the potential energy VV and the exchange-correlation free energy FxcF_{xc} of the macroscopic electron gas with an unprecedented accuracy of ΔV/V,ΔFxc/Fxc103|\Delta V|/|V|, |\Delta F_{xc}|/|F|_{xc} \sim 10^{-3}. A comparison of our new data to the recent parametrization of FxcF_{xc} by Karasiev {\em et al.} [PRL {\bf 112}, 076403 (2014)] reveals significant deviations to the latter

    Efficient Exploration of Microstructure-Property Spaces via Active Learning

    Get PDF
    In materials design, supervised learning plays an important role for optimization and inverse modeling of microstructure-property relations. To successfully apply supervised learning models, it is essential to train them on suitable data. Here, suitable means that the data covers the microstructure and property space sufficiently and, especially for optimization and inverse modeling, that the property space is explored broadly. For virtual materials design, typically data is generated by numerical simulations, which implies that data pairs can be sampled on demand at arbitrary locations in microstructure space. However, exploring the space of properties remains challenging. To tackle this problem, interactive learning techniques known as active learning can be applied. The present work is the first that investigates the applicability of the active learning strategy query-by-committee for an efficient property space exploration. Furthermore, an extension to active learning strategies is described, which prevents from exploring regions with properties out of scope (i.e., properties that are physically not meaningful or not reachable by manufacturing processes)

    Sorption properties and reversibility of Ti(IV) and Nb(V)-fluoride doped-Ca(BH4)2-MgH2 system

    Get PDF
    Ajuts: The authors are grateful to the Marie-Curie European Research Training Network (Contract MRTN-CT-2006-03 5366/COSY)In the last decade, alkaline and alkaline earth metal tetrahydroborates have been the focuses of the research due to their high gravimetric and volumetric hydrogen densities. Among them, Ca(BH4)2 and the Ca(BH4)2 + MgH2 reactive hydride composite (RHC), were calculated to have the ideal thermodynamic properties which fall within the optimal range for mobile applications.In this study, the addition of NbF5 or TiF4 to the Ca(BH4)2 + MgH2 reactive hydride composite system was attempted aiming to obtain a full reversible system with the simultaneous supression of CaB12H12. Structural characterization of the specimens was performed by means of in-situ Synchroton Radiation Power X-ray diffraction (SR-PXD) and 11B {1H} Solid State Magic Angle Spinning-Nuclear Magnetic Resonance (MAS-NMR). The evolution of the chemical state of the Nb- and Ti-based additives was monitored by X-ray Absorption Near Edge Structure (XANES). The addition of NbF5 or TiF4 to the Ca(BH4)2 + MgH2 system have not supressed completely the formation of CaB12H12 and only a slight improvement concerning the reversible reaction was displayed just in the case of Nb-doped composite materia

    Conductance anomalies in quantum wires

    Full text link
    We study the conductance threshold of clean nearly straight quantum wires in the magnetic field. As a quantitative example we solve exactly the scattering problem for two-electrons in a wire with planar geometry and a weak bulge. From the scattering matrix we determine conductance via the Landauer-Buettiker formalism. The conductance anomalies found near 0.25(2e^2/h) and 0.75(2e^2/h) are related to a singlet resonance and a triplet resonance, respectively, and survive to temperatures of a few degrees. With increasing in-plane magnetic field the conductance exhibits a plateau at e^2/h, consistent with recent experiments.Comment: Quantum wire with planar geometry; in-plane magnetic fiel

    Using the emission of muonic x-rays as a spectroscopic tool for the investigation of the local chemistry of elements

    Get PDF
    There are several techniques providing quantitative elemental analysis, but very few capable of identifying both the concentration and chemical state of elements. This study presents a systematic investigation of the properties of the X-rays emitted after the atomic capture of negatively charged muons. The probability rates of the muonic transitions possess sensitivity to the electronic structure of materials, thus making the muonic X-ray Emission Spectroscopy complementary to the X-ray Absorption and Emission techniques for the study of the chemistry of elements, and able of unparalleled analysis in case of elements bearing low atomic numbers. This qualitative method is applied to the characterization of light elements-based, energy-relevant materials involved in the reaction of hydrogen desorption from the reactive hydride composite Ca(BH4)2-Mg2NiH4. The origin of the influence of the band-structure on the muonic atom is discussed and the observed effects are attributed to the contribution of the electronic structure to the screening and to the momentum distribution in the muon cascade

    Hydrogen sorption in the LiH-LiF-MgB2 system

    Get PDF
    A composite material in the LiH-LiF-MgB2 system has been synthesized by high-energy ball milling. Some peaks in addition to that of the binary 2LiH-MgB2 and 2LiF-MgB2 systems are observed for the composite material by high-pressure differential scanning calorimetry (HP-DSC), indicating the formation of intermediate phases. In situ synchrotron radiation powder X-ray diffraction (SR-PXD) performed at 60 bar of H-2 and 390 degrees C shows a superposition of both reaction pathways that are typical for 2LiH-MgB2 and 2LiF-MgB2. After hydrogen absorption of the LiH-LiF-MgB2 composite the vibrational modes of LiBH4 were observed by attenuated total reflection infrared (ATR-IR) spectroscopy. The F-19 MAS NMR spectrum of the LiF-LiBH4 sample after heat treatment in hydrogen is strongly dominated by the centerband and spinning sidebands from LiF; in addition, a low-intensity resonance, very similar to that of [BF4](-) ion, is identified

    СО́КА

    Get PDF
    In a recent Letter [T.~Dornheim \textit{et al.}, Phys. Rev. Lett. \textbf{117}, 156403 (2016)], we presented the first \textit{ab initio} quantum Monte-Carlo (QMC) results of the warm dense electron gas in the thermodynamic limit. However, a complete parametrization of the exchange-correlation free energy with respect to density, temperature, and spin polarization remained out of reach due to the absence of (i) accurate QMC results below θ=kBT/EF=0.5\theta=k_\text{B}T/E_\text{F}=0.5 and (ii) of QMC results for spin polarizations different from the paramagnetic case. Here we overcome both remaining limitations. By closing the gap to the ground state and by performing extensive QMC simulations for different spin polarizations, we are able to obtain the first complete \textit{ab initio} exchange-correlation free energy functional; the accuracy achieved is an unprecedented 0.3%\sim 0.3\%. This also allows us to quantify the accuracy and systematic errors of various previous approximate functionals

    X-ray Thomson scattering absolute intensity from the f-sum rule in the imaginary-time domain

    Full text link
    We evaluate the f-sum rule on the dynamic structure factor in the imaginary-time domain as a formally exact and simulation-free means of normalizing X-Ray Thomson Scattering (XRTS) spectra. This circumvents error-prone real-time deconvolution of the source function and facilitates calculating the static structure factor from the properly normalized imaginary-time correlation function. We apply our technique to two distinct sets of experimental data, finding that it is effective for both narrow and broad x-ray sources. This approach could be readily adapted to other scattering spectroscopies
    corecore