346 research outputs found

    Mercury's Weather-Beaten Surface: An Examination of the Relevant Processes Through Comparisons and Contrasts with the Moon and Asteroids

    Get PDF
    We examine global color properties of Mercury and their correlations to the predicted trends due to particle bombardment and thermal processing. Color ratio and spectral slope analyzes are interpreted relative to lunar and asteroid studies

    Workshop on the Space Environment: The Effects on the Optical Properties of Airless Bodies

    Get PDF
    Reflectance spectrophotometry and polarimetry are major tools in remote sensing studies of surfaces of solar system bodies. The interpretations of such measurements are often based on laboratory studies of meteoritic, lunar, and terrestrial materials. However, the optical properties of regoliths are known to be affected by the space environment. Thus, some of the major questions addressed in the workshop include identity of the soil component responsible for alteration of the optical properties, the process that produced this component, and how reliably the effects of these processes could be extrapolated to other bodies of the solar system

    Collaborative semantic web browsing with Magpie

    Get PDF
    Web browsing is often a collaborative activity. Users involved in a joint information gathering exercise will wish to share knowledge about the web pages visited and the contents found. Magpie is a suite of tools supporting the interpretation of web pages and semantically enriched web browsing. By automatically associating an ontology-based semantic layer to web resources, Magpie allows relevant services to be invoked as well as remotely triggered within a standard web browser. In this paper we describe how Magpie trigger services can provide semantic support to collaborative browsing activities

    The Earliest Origins of Genetic Nurture: The Prenatal Environment Mediates the Association Between Maternal Genetics and Child Development

    Get PDF
    Observed genetic associations with educational attainment may be due to direct or indirect genetic influences. Recent work highlights genetic nurture, the potential effect of parents’ genetics on their child’s educational outcomes via rearing environments. To date, few mediating childhood environments have been tested. We used a large sample of genotyped mother–child dyads (N = 2,077) to investigate whether genetic nurture occurs via the prenatal environment. We found that mothers with more education-related genes are generally healthier and more financially stable during pregnancy. Further, measured prenatal conditions explain up to one third of the associations between maternal genetics and children’s academic and developmental outcomes at the ages of 4 to 7 years. By providing the first evidence of prenatal genetic nurture and showing that genetic nurture is detectable in early childhood, this study broadens our understanding of how parental genetics may influence children and illustrates the challenges of within-person interpretation of existing genetic associations

    Dust in Spiral Galaxies: Comparing Emission and Absorption to Constrain Small-Scale and Very Cold Structures

    Get PDF
    The detailed distribution of dust in the disks of spiral galaxies is important to understanding the radiative transfer within disks, and to measuring overall dust masses if significant quantities of dust are either very opaque or very cold. We address this issue by comparing measures of dust absorption, using the galaxy-overlap technique in the optical, with measures of the dust grains' thermal emission from 50-2000 micron using ISOPHOT on board ISO and SCUBA at the JCMT. We examine three spiral galaxies projected partially in front of E/S0 galaxies --- AM1316-241, NGC 5545, and NGC 5091 (for NGC 5091 we have only optical and ISO data). Adopting an empirical exponential model for the dust distribution, we compare column densities and dust masses derived from the absorption and emission techniques. This comparison is sensitive to the amount of dust mass in small, opaque structures, which would not contribute strongly to area-weighted absorption measures, and to very cold dust, which would contribute to optical absorption but provide only a small fraction of the sub-mm emission. In AM1316-241, we find global dust masses of 2-5 x 10^7 M_solar, both techniques agreeing at the 50% level. NGC 5545 has about half this dust mass. The concordance of dust masses is well within the errors expected from our knowledge of the radial distribution of dust, and argues against any dominant part of the dust mass being so cold or opaque. The 50-2000 micron data are well fitted by modified Planck functions with an emissivity law beta=-2, at 21 +/- 2 K. We also present 12 micron ISOCAM observations of these pairs.Comparison of H-alpha and 12 micron images of NGC 5545 indicate that ISOCAM images are reliable tracers of star formation.Comment: 16 pages, 4 tables, 8 figures, in press for October Astronomical Journa

    The social genome of friends and schoolmates in the National Longitudinal Study of Adolescent to Adult Health

    Get PDF
    Our study reported significant findings of a “social genome” that can be quantified and studied to understand human health and behavior. In a national sample of more than 5,000 American adolescents, we found evidence of social forces that act to make friends and schoolmates more genetically similar to one another compared with random pairs of unrelated individuals. This subtle genetic similarity was observed across the entire genome and at sets of genomic locations linked with specific traits—educational attainment and body mass index—a phenomenon we term “social–genetic correlation.” We also find evidence of a “social–genetic effect” such that the genetics of a person’s friends and schoolmates influenced their own education, even after accounting for the person’s own genetics
    corecore