422 research outputs found

    Scattering of massive Dirac fields on the Schwarzschild black hole spacetime

    Full text link
    With a generally covariant equation of Dirac fields outside a black hole, we develop a scattering theory for massive Dirac fields. The existence of modified wave operators at infinity is shown by implementing a time-dependent logarithmic phase shift from the free dynamics to offset a long-range mass term. The phase shift we obtain is a matrix operator due to the existence of both positive and negative energy wave components.Comment: LaTex, 17 page

    On Renormalization Group Flows and Polymer Algebras

    Get PDF
    In this talk methods for a rigorous control of the renormalization group (RG) flow of field theories are discussed. The RG equations involve the flow of an infinite number of local partition functions. By the method of exact beta-function the RG equations are reduced to flow equations of a finite number of coupling constants. Generating functions of Greens functions are expressed by polymer activities. Polymer activities are useful for solving the large volume and large field problem in field theory. The RG flow of the polymer activities is studied by the introduction of polymer algebras. The definition of products and recursive functions replaces cluster expansion techniques. Norms of these products and recursive functions are basic tools and simplify a RG analysis for field theories. The methods will be discussed at examples of the Φ4\Phi^4-model, the O(N)O(N) σ\sigma-model and hierarchical scalar field theory (infrared fixed points).Comment: 32 pages, LaTeX, MS-TPI-94-12, Talk presented at the conference ``Constructive Results in Field Theory, Statistical Mechanics and Condensed Matter Physics'', 25-27 July 1994, Palaiseau, Franc

    Local covariant quantum field theory over spectral geometries

    Full text link
    A framework which combines ideas from Connes' noncommutative geometry, or spectral geometry, with recent ideas on generally covariant quantum field theory, is proposed in the present work. A certain type of spectral geometries modelling (possibly noncommutative) globally hyperbolic spacetimes is introduced in terms of so-called globally hyperbolic spectral triples. The concept is further generalized to a category of globally hyperbolic spectral geometries whose morphisms describe the generalization of isometric embeddings. Then a local generally covariant quantum field theory is introduced as a covariant functor between such a category of globally hyperbolic spectral geometries and the category of involutive algebras (or *-algebras). Thus, a local covariant quantum field theory over spectral geometries assigns quantum fields not just to a single noncommutative geometry (or noncommutative spacetime), but simultaneously to ``all'' spectral geometries, while respecting the covariance principle demanding that quantum field theories over isomorphic spectral geometries should also be isomorphic. It is suggested that in a quantum theory of gravity a particular class of globally hyperbolic spectral geometries is selected through a dynamical coupling of geometry and matter compatible with the covariance principle.Comment: 21 pages, 2 figure

    AdS/CFT correspondence in the Euclidean context

    Full text link
    We study two possible prescriptions for AdS/CFT correspondence by means of functional integrals. The considerations are non-perturbative and reveal certain divergencies which turn out to be harmless, in the sense that reflection-positivity and conformal invariance are not destroyed.Comment: 20 pages, references and two remarks adde

    Distributional Modes for Scalar Field Quantization

    Get PDF
    We propose a mode-sum formalism for the quantization of the scalar field based on distributional modes, which are naturally associated with a slight modification of the standard plane-wave modes. We show that this formalism leads to the standard Rindler temperature result, and that these modes can be canonically defined on any Cauchy surface.Comment: 15 pages, RevTe

    Time-Translation Invariance of Scattering Maps and Blue-Shift Instabilities on Kerr Black Hole Spacetimes

    Full text link
    In this paper, we provide an elementary, unified treatment of two distinct blue-shift instabilities for the scalar wave equation on a fixed Kerr black hole background: the celebrated blue-shift at the Cauchy horizon (familiar from the strong cosmic censorship conjecture) and the time-reversed red-shift at the event horizon (relevant in classical scattering theory). Our first theorem concerns the latter and constructs solutions to the wave equation on Kerr spacetimes such that the radiation field along the future event horizon vanishes and the radiation field along future null infinity decays at an arbitrarily fast polynomial rate, yet, the local energy of the solution is infinite near any point on the future event horizon. Our second theorem constructs solutions to the wave equation on rotating Kerr spacetimes such that the radiation field along the past event horizon (extended into the black hole) vanishes and the radiation field along past null infinity decays at an arbitrarily fast polynomial rate, yet, the local energy of the solution is infinite near any point on the Cauchy horizon. The results make essential use of the scattering theory developed in [M. Dafermos, I. Rodnianski and Y. Shlapentokh-Rothman, A scattering theory for the wave equation on Kerr black hole exteriors, preprint (2014) available at \url{http://arxiv.org/abs/1412.8379}] and exploit directly the time-translation invariance of the scattering map and the non-triviality of the transmission map.Comment: 26 pages, 12 figure

    The Gravitational Demise of Cold Degenerate Stars

    Full text link
    We consider the long term fate and evolution of cold degenerate stars under the action of gravity alone. Although such stars cannot emit radiation through the Hawking mechanism, the wave function of the star will contain a small admixture of black hole states. These black hole states will emit radiation and hence the star can lose its mass energy in the long term. We discuss the allowed range of possible degenerate stellar evolution within this framework.Comment: LaTeX, 18 pages, one figure, accepted to Physical Review
    corecore