11 research outputs found
StdpC: a modern dynamic clamp
With the advancement of computer technology many novel uses of dynamic clamp have become possible. We have added new features to our dynamic clamp software StdpC (“Spike timing-dependent plasticity Clamp”) allowing such new applications while conserving the ease of use and installation of the popular earlier Dynclamp 2/4 package. Here, we introduce the new features of a waveform generator, freely programmable Hodgkin–Huxley conductances, learning synapses, graphic data displays, and a powerful scripting mechanism and discuss examples of experiments using these features. In the first example we built and ‘voltage clamped’ a conductance based model cell from a passive resistor–capacitor (RC) circuit using the dynamic clamp software to generate the voltage-dependent currents. In the second example we coupled our new spike generator through a burst detection/burst generation mechanism in a phase-dependent way to a neuron in a central pattern generator and dissected the subtle interaction between neurons, which seems to implement an information transfer through intraburst spike patterns. In the third example, making use of the new plasticity mechanism for simulated synapses, we analyzed the effect of spike timing-dependent plasticity (STDP) on synchronization revealing considerable enhancement of the entrainment of a post-synaptic neuron by a periodic spike train. These examples illustrate that with modern dynamic clamp software like StdpC, the dynamic clamp has developed beyond the mere introduction of artificial synapses or ionic conductances into neurons to a universal research tool, which might well become a standard instrument of modern electrophysiology
A Novel Neural Substrate for the Transformation of Olfactory Inputs into Motor Output
Anatomical and physiological experiments in the lamprey reveal the neural circuit involved in transforming olfactory inputs into motor outputs, which was previously unknown in a vertebrate
Chemical cues and pheromones in the sea lamprey (Petromyzon marinus)
Chemical cues and pheromones guide decisions in organisms throughout the animal kingdom. The neurobiology, function, and evolution of olfaction are particularly well described in insects, and resulting concepts have driven novel approaches to pest control. However, aside from several exceptions, the olfactory biology of vertebrates remains poorly understood. One exception is the sea lamprey (Petromyzon marinus), which relies heavily upon olfaction during reproduction. Here, we provide a broad review of the chemical cues and pheromones used by the sea lamprey during reproduction, including overviews of the sea lamprey olfactory system, chemical cues and pheromones, and potential applications to population management. The critical role of olfaction in mediating the sea lamprey life cycle is evident by a well-developed olfactory system. Sea lamprey use chemical cues and pheromones to identify productive spawning habitat, coordinate spawning behaviors, and avoid risk. Manipulation of olfactory biology offers opportunities for management of populations in the Laurentian Great Lakes, where the sea lamprey is a destructive invader. We suggest that the sea lamprey is a broadly useful organism with which to study vertebrate olfaction because of its simple but well-developed olfactory organ, the dominant role of olfaction in guiding behaviors during reproduction, and the direct implications for vertebrate pest management
