232 research outputs found
Recommended from our members
Remote sensing methodology for bioenvironmental surveillance in the vicinity of the Boardman Coal-Fired Power Plant, Oregon
In 1979, the Geographic Applications Laboratory
of the Department of Geography, Oregon State University,
was retained by the Portland General Electric Company to
form and supervise a program to monitor the bioenvironment
in the vicinity of the Boardman Coal-Fired Power plant. This
partially fulfills requirements of the Department of Energy in
allowing the newly built power plant to become operational.
This was achieved in August, 1980. Remote sensing was chosen
as the tool to perform this task because of its ability to monitor
large areas effectively at a minimal cost. Three imagery modes
of varying scale were selected (1) LANDSAT Multispectral
Scanning; (2) High level color infrared imagery acquired by
NASA U-2 operational aircraft and; (3) Low level color and
color infrared imagery, which was selected as the primary
source of analysis. After establishing study area boundaries,
- study sites and primary imagery flight lines, the functions of
this project included: imagery acquisition; analytical interpretation;
monthly and annual written evaluations of study area
conditions and imagery quality; and establishment of a background
file for future analytical reference
Vaccines against toxoplasma gondii : challenges and opportunities
Development of vaccines against Toxoplasma gondii infection in humans is of high priority, given the high burden of disease in some areas of the world like South America, and the lack of effective drugs with few adverse effects. Rodent models have been used in research on vaccines against T. gondii over the past decades. However, regardless of the vaccine construct, the vaccines have not been able to induce protective immunity when the organism is challenged with T. gondii, either directly or via a vector. Only a few live, attenuated T. gondii strains used for immunization have been able to confer protective immunity, which is measured by a lack of tissue cysts after challenge. Furthermore, challenge with low virulence strains, especially strains with genotype II, will probably be insufficient to provide protection against the more virulent T. gondii strains, such as those with genotypes I or II, or those genotypes from South America not belonging to genotype I, II or III. Future studies should use animal models besides rodents, and challenges should be performed with at least one genotype II T. gondii and one of the more virulent genotypes. Endpoints like maternal-foetal transmission and prevention of eye disease are important in addition to the traditional endpoint of survival or reduction in numbers of brain cysts after challenge
Does the Burglar Also Disturb the Neighbor? Crime Spillovers on Individual Well-Being
Indirect psychological effects induced by crime are likely to contribute significantly to the total costs of crime beyond the financial costs of direct victimization. Using detailed crime statistics for the whole of Germany and linking them to individual-level mental health information from the German Socio-Economic Panel, we analyze whether local crime rates affect the mental health of residents. We estimate that a one standard deviation increase in local violent crime rates significantly decreases individual mental well-being among residents by, on average, one percent. Smaller effects are found for property and total crime rates. Results are insensitive to migration and not isolated to urban areas, but are rather driven by less densely populated regions. In contrast to previous literature on vulnerability to crime, we find that men, more educated and singles react more to variation in violent crime rates in their neighborhoods. One potential explanation could be that those who are more fearful of crime have developed better coping strategies and, hence, react less to changes in crime.Indirekte psychologische Effekte stellen möglicherweise einen erheblichen Teil der durch Kriminalität verursachten Gesamtkosten dar. Um zu analysieren, ob regionale Kriminalitätsraten die mentale Gesundheit beeinflussen, nutzen wir detaillierte Kriminalitätsinformationen für Deutschland und verknüpfen diese mit Informationen zu individueller mentaler Gesundheit aus dem Sozio-ökonomischen Panel. Unsere Schätzergebnisse implizieren, dass der Anstieg um eine Standardabweichung in der Gewaltverbrechensrate das mentale Wohlbefinden der lokalen Bevölkerung signifikant um durchschnittlich ein Prozent reduziert. Für Eigentumsdelikte und die Gesamtkriminalitätsrate beobachten wir geringere Effekte. Die Ergebnisse werden weder durch Wohnortwechsler beeinflusst noch sind sie auf urbane Regionen begrenzt, sondern sind vielmehr durch weniger dicht besiedelte Regionen getrieben. Im Gegensatz zur Literatur zur Angst vor Kriminalität beobachten wir, dass Männer, höher Gebildete und Alleinstehende sensibler auf Veränderungen in der regionalen Gewaltverbrechensrate reagieren. Eine Erklärung hierfür könnte sein, dass diejenigen, die mehr Angst vor Kriminalität haben, entsprechende Coping-Strategien entwickelt haben und daher auch weniger auf Veränderungen in der Kriminalitätsrate reagieren
Programmable in situ amplification for multiplexed imaging of mRNA expression
In situ hybridization methods enable the mapping of mRNA expression within intact biological samples. With current approaches, it is challenging to simultaneously map multiple target mRNAs within whole-mount vertebrate embryos, representing a significant limitation in attempting to study interacting regulatory elements in systems most relevant to human development and disease. Here, we report a multiplexed fluorescent in situ hybridization method based on orthogonal amplification with hybridization chain reactions (HCR). With this approach, RNA probes complementary to mRNA targets trigger chain reactions in which fluorophore-labeled RNA hairpins self-assemble into tethered fluorescent amplification polymers. The programmability and sequence specificity of these amplification cascades enable multiple HCR amplifiers to operate orthogonally at the same time in the same sample. Robust performance is achieved when imaging five target mRNAs simultaneously in fixed whole-mount and sectioned zebrafish embryos. HCR amplifiers exhibit deep sample penetration, high signal-to-background ratios and sharp signal localization
Use of different RT-QuIC substrates for detecting CWD prions in the brain of Norwegian cervids
Chronic wasting disease (CWD) is a highly contagious prion disease affecting captive and free-ranging cervid populations. CWD has been detected in United States, Canada, South Korea and, most recently, in Europe (Norway, Finland and Sweden). Animals with CWD release infectious prions in the environment through saliva, urine and feces sustaining disease spreading between cervids but also potentially to other non-cervids ruminants (e.g. sheep, goats and cattle). In the light of these considerations and due to CWD unknown zoonotic potential, it is of utmost importance to follow specific surveillance programs useful to minimize disease spreading and transmission. The European community has already in place specific surveillance measures, but the traditional diagnostic tests performed on nervous or lymphoid tissues lack sensitivity. We have optimized a Real-Time Quaking-Induced Conversion (RT-QuIC) assay for detecting CWD prions with high sensitivity and specificity to try to overcome this problem. In this work, we show that bank vole prion protein (PrP) is an excellent substrate for RT-QuIC reactions, enabling the detection of trace-amounts of CWD prions, regardless of prion strain and cervid species. Beside supporting the traditional diagnostic tests, this technology could be exploited for detecting prions in peripheral tissues from live animals, possibly even at preclinical stages of the disease
Vaccination with Recombinant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice
Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6) or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6) to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection
The Myeloid Receptor PILRβ Mediates the Balance of Inflammatory Responses through Regulation of IL-27 Production
Paired immunoglobulin-like receptors beta, PILRβ, and alpha, PILRα, are related to the Siglec family of receptors and are expressed primarily on cells of the myeloid lineage. PILRβ is a DAP12 binding partner expressed on both human and mouse myeloid cells. The potential ligand, CD99, is found on many cell types, such as epithelial cells where it plays a role in migration of immune cells to sites of inflammation. Pilrb deficient mice were challenged with the parasite Toxoplasma gondii in two different models of infection induced inflammation; one involving the establishment of chronic encephalitis and a second mimicking inflammatory bowel disease in order to understand the potential role of this receptor in persistent inflammatory responses. It was found that in the absence of activating signals from PILRβ, antigen-presenting cells (APCs) produced increased amounts of IL-27, p28 and promoted IL-10 production in effector T cells. The sustained production of IL-27 led ultimately to enhanced survival after challenge due to dampened immune pathology in the gut. Similar protection was also observed in the CNS during chronic T. gondii infection after i.p. challenge again providing evidence that PILRβ is important for regulating aberrant inflammatory responses
Parasite fate and involvement of infected cells in the induction of CD4+ and CD8+ T cell responses to Toxoplasma gondii
During infection with the intracellular parasite Toxoplasma gondii, the presentation of parasite-derived antigens to CD4+ and CD8+ T cells is essential for long-term resistance to this pathogen. Fundamental questions remain regarding the roles of phagocytosis and active invasion in the events that lead to the processing and presentation of parasite antigens. To understand the most proximal events in this process, an attenuated non-replicating strain of T. gondii (the cpsII strain) was combined with a cytometry-based approach to distinguish active invasion from phagocytic uptake. In vivo studies revealed that T. gondii disproportionately infected dendritic cells and macrophages, and that infected dendritic cells and macrophages displayed an activated phenotype characterized by enhanced levels of CD86 compared to cells that had phagocytosed the parasite, thus suggesting a role for these cells in priming naïve T cells. Indeed, dendritic cells were required for optimal CD4+ and CD8+ T cell responses, and the phagocytosis of heat-killed or invasion-blocked parasites was not sufficient to induce T cell responses. Rather, the selective transfer of cpsII-infected dendritic cells or macrophages (but not those that had phagocytosed the parasite) to naïve mice potently induced CD4+ and CD8+ T cell responses, and conferred protection against challenge with virulent T. gondii. Collectively, these results point toward a critical role for actively infected host cells in initiating T. gondii-specific CD4+ and CD8+ T cell responses
The role of P2 receptors in controlling infections by intracellular pathogens
A growing number of studies have demonstrated the importance of ATPe-signalling via P2 receptors as an important component of the inflammatory response to infection. More recent studies have shown that ATPe can also have a direct effect on infection by intracellular pathogens, by modulating membrane trafficking in cells that contain vacuoles that harbour intracellular pathogens, such as mycobacteria and chlamydiae. A conserved mechanism appears to be involved in controlling infection by both of these pathogens, as a role for phospholipase D in inducing fusion between lysosomes and the vacuoles has been demonstrated. Other P2-dependent mechanisms are most likely operative in the cases of pathogens, such as Leishmania, which survive in an acidic phagolysosomal-like compartment. ATPe may function as a ‘danger signal–that alerts the immune system to the presence of intracellular pathogens that damage the host cell, while different intracellular pathogens have evolved enzymes or other mechanisms to inhibit ATPe-mediated signalling, which should, thus, be viewed as virulence factors for these pathogens
- …