9,958 research outputs found
Branched Polymers on the Given-Mandelbrot family of fractals
We study the average number A_n per site of the number of different
configurations of a branched polymer of n bonds on the Given-Mandelbrot family
of fractals using exact real-space renormalization. Different members of the
family are characterized by an integer parameter b, b > 1. The fractal
dimension varies from to 2 as b is varied from 2 to infinity. We
find that for all b > 2, A_n varies as , where
and are some constants, and . We determine the
exponent , and the size exponent (average diameter of polymer
varies as ), exactly for all b > 2. This generalizes the earlier results
of Knezevic and Vannimenus for b = 3 [Phys. Rev {\bf B 35} (1987) 4988].Comment: 24 pages, 8 figure
Radiative capture of polarized neutrons by polarized protons
A model-independent irreducible tensor approach to p(n,gamma)d is presented
and an explicit form for the spin-structure of the matrix for the reaction is
obtained in terms of the Pauli spin-matrices for the neutron and the proton.
Expressing the multipole amplitudes in terms of the triplet --> triplet and
singlet --> triplet transitions, we point out how the initial singlet and
triplet contributions to the differential cross section can be determined
empirically.Comment: Revised version; typeset using RevTeX4; 6 pages, no figure
Generating entanglement between quantum dots with different resonant frequencies based on Dipole Induced Transparency
We describe a method for generating entanglement between two spatially
separated dipoles coupled to optical micro-cavities.
The protocol works even when the dipoles have different resonant frequencies
and radiative lifetimes.
This method is particularly important for solid-state emitters, such as
quantum dots, which suffer from large inhomogeneous broadening. We show that
high fidelities can be obtained over a large dipole detuning range without
significant loss of efficiency. We analyze the impact of higher order photon
number states and cavity resonance mismatch on the performance of the protocol
Crossover from hydrodynamic to acoustic drag on quartz tuning forks in normal and superfluid 4He
We present measurements of the drag forces on quartz tuning forks oscillating at low velocities in normal and superfluid 4He. We have investigated the dissipative drag over a wide range of frequencies, from 6.5 to 600 kHz, by using arrays of forks with varying prong lengths and by exciting the forks in their fundamental and first overtone modes. At low frequencies the behavior is dominated by laminar hydrodynamic drag, governed by the fluid viscosity. At higher frequencies acoustic drag is dominant and is described well by a three-dimensional model of sound emission
Transition from confined to bulk dynamics in symmetric star-linear polymer mixtures
We report on the linear viscoelastic properties of mixtures comprising
multiarm star (as model soft colloids) and long linear chain homopolymers in a
good solvent. In contrast to earlier works, we investigated symmetric mixtures
(with a size ratio of 1) and showed that the polymeric and colloidal responses
can be decoupled. The adopted experimental protocol involved probing the linear
chain dynamics in different star environments. To this end, we studied mixtures
with different star mass fraction, which was kept constant while linear chains
were added and their entanglement plateau modulus () and terminal
relaxation time () were measured as functions of their concentration.
Two distinct scaling regimes were observed for both and : at low
linear polymer concentrations, a weak concentration dependence was observed,
that became even weaker as the fraction of stars in the mixtures increased into
the star glassy regime. On the other hand, at higher linear polymer
concentrations, the classical entangled polymer scaling was recovered. Simple
scaling arguments show that the threshold crossover concentration between the
two regimes corresponds to the maximum osmotic star compression and signals the
transition from confined to bulk dynamics. These results provide the needed
ingredients to complete the state diagram of soft colloid-polymer mixtures and
investigate their dynamics at large polymer-colloid size ratios. They also
offer an alternative way to explore aspects of the colloidal glass transition
and the polymer dynamics in confinement. Finally, they provide a new avenue to
tailor the rheology of soft composites.Comment: 9 Figure
Drift and trapping in biased diffusion on disordered lattices
We reexamine the theory of transition from drift to no-drift in biased
diffusion on percolation networks. We argue that for the bias field B equal to
the critical value B_c, the average velocity at large times t decreases to zero
as 1/log(t). For B < B_c, the time required to reach the steady-state velocity
diverges as exp(const/|B_c-B|). We propose an extrapolation form that describes
the behavior of average velocity as a function of time at intermediate time
scales. This form is found to have a very good agreement with the results of
extensive Monte Carlo simulations on a 3-dimensional site-percolation network
and moderate bias.Comment: 4 pages, RevTex, 3 figures, To appear in International Journal of
Modern Physics C, vol.
Probability distribution of residence times of grains in models of ricepiles
We study the probability distribution of residence time of a grain at a site,
and its total residence time inside a pile, in different ricepile models. The
tails of these distributions are dominated by the grains that get deeply buried
in the pile. We show that, for a pile of size , the probabilities that the
residence time at a site or the total residence time is greater than , both
decay as for where
is an exponent , and values of and in the two
cases are different. In the Oslo ricepile model we find that the probability
that the residence time at a site being greater than or equal to ,
is a non-monotonic function of for a fixed and does not obey simple
scaling. For model in dimensions, we show that the probability of minimum
slope configuration in the steady state, for large , varies as where is a constant, and hence .Comment: 13 pages, 23 figures, Submitted to Phys. Rev.
- …
