35 research outputs found

    Caspase involvement in autophagy

    Get PDF
    Caspases are a family of cysteine proteases widely known as the principal mediators of the apoptotic cell death response, but considerably less so as the contributors to the regulation of pathways outside cellular demise. In regards to autophagy, the modulatory roles of caspases have only recently begun to be adequately described. In contrast to apoptosis, autophagy promotes cell survival by providing energy and nutrients through the lysosomal degradation of cytoplasmic constituents. Under basal conditions autophagy and apoptosis cross-regulate each other through an elaborate network of interconnections which also includes the interplay between autophagyrelated proteins (ATGs) and caspases. In this review we focus on the effects of this crosstalk at the cellular level, as we aim to concentrate the main observations from research conducted so far on the fine-tuning of autophagy by caspases. Several members of this protease-family have been found to directly interact with key ATGs involved in different tiers across the autophagic cascade. Therefore, we firstly outline the core mechanism of macroautophagy in brief. In an effort to emphasize the importance of the intricate cross-regulation of ATGs and caspases, we also present examples drawn from Drosophila and plant models regarding the contribution of autophagy to apoptotic cell death during normal development

    Steroid Hormone Control of Cell Death and Cell Survival: Molecular Insights Using RNAi

    Get PDF
    The insect steroid hormone ecdysone triggers programmed cell death of obsolete larval tissues during metamorphosis and provides a model system for understanding steroid hormone control of cell death and cell survival. Previous genome-wide expression studies of Drosophila larval salivary glands resulted in the identification of many genes associated with ecdysone-induced cell death and cell survival, but functional verification was lacking. In this study, we test functionally 460 of these genes using RNA interference in ecdysone-treated Drosophila l(2)mbn cells. Cell viability, cell morphology, cell proliferation, and apoptosis assays confirmed the effects of known genes and additionally resulted in the identification of six new pro-death related genes, including sorting nexin-like gene SH3PX1 and Sox box protein Sox14, and 18 new pro-survival genes. Identified genes were further characterized to determine their ecdysone dependency and potential function in cell death regulation. We found that the pro-survival function of five genes (Ras85D, Cp1, CG13784, CG32016, and CG33087), was dependent on ecdysone signaling. The TUNEL assay revealed an additional two genes (Kap-α3 and Smr) with an ecdysone-dependent cell survival function that was associated with reduced cell death. In vitro, Sox14 RNAi reduced the percentage of TUNEL-positive l(2)mbn cells (p<0.05) following ecdysone treatment, and Sox14 overexpression was sufficient to induce apoptosis. In vivo analyses of Sox14-RNAi animals revealed multiple phenotypes characteristic of aberrant or reduced ecdysone signaling, including defects in larval midgut and salivary gland destruction. These studies identify Sox14 as a positive regulator of ecdysone-mediated cell death and provide new insights into the molecular mechanisms underlying the ecdysone signaling network governing cell death and cell survival
    corecore