109 research outputs found

    Optics: general-purpose scintillator light response simulation code

    Get PDF
    We present the program optics that simulates the light response of an arbitrarily shaped scintillation particle detector. Predicted light responses of pure CsI polygonal detectors, plastic scintillator staves, cylindrical plastic target scintillators and a Plexiglas light-distribution plate are illustrated. We demonstrate how different bulk and surface optical properties of a scintillator lead to specific volume and temporal light collection probability distributions. High-statistics optics simulations are calibrated against the detector responses measured in a custom-made cosmic muon tomography apparatus. The presented code can also be used to track particles intersecting complex geometrical objects.Comment: RevTeX LaTeX, 37 pages in e-print format, 12 Postscript Figures and 1 Table, also available at http://pibeta.phys.virginia.edu/public_html/preprints/optics.p

    Scintillation of tantalate compounds

    Get PDF
    A screening of 63 metal-tantalate-oxides was conducted in search of heavy scintillator materials operating at ambient temperature. While tantalates are known to have slow scintillation decay times, the high atomic number of tantalum (73) provides good stopping power for gamma rays. Screened samples were synthesized by solid state reactions. Scintillation properties of these materials were evaluated by X-ray diffraction, X-ray excited luminescence and pulsed X-ray luminescence. Of the 63 synthesized tantalates examined only 12 had luminosity values greater than 1000 ph/MeV at room temperature. From these, ScTaO4, YTa3O9, and Zn3Ta2O8 have greater than 40% of their emission in the first μs. The brightest and fastest compound of those tested was Zn3Ta2O8 with an estimated luminosity of 26,000 ph/MeV and a main decay time of 600 ns from its crystalline powder. Further attention is given to Zn3Ta2O8 and Mg4Ta2O9 scintillation properties, demonstrating their potential for scintillation applications

    Temperature dependence of CsI(Tl) gamma-ray excited scintillation characteristics

    Full text link
    The gamma-ray excited, temperature dependent scintillation characteristics of CsI(Tl) are reported over the temperature range of -100 to + 50[deg]C. The modified Bollinger-Thomas and shaped square wave methods were used to measure the rise and decay times. Emission spectra were measured using a monochromator and corrected for monochromator and photocathode spectral efficiencies. The shaped square wave method was also used to determine the scintillation yield as was a current mode method. The thermoluminescence emissions of CsI(Tl) were measured using the same current mode method. At room temperature, CsI(Tl) was found to have two primary decay components with decay time constants of [tau]1 = 679+/-10 ns (63.7%) and [tau]2 = 3.34+/-0.14 [mu]s (36.1%), and to have emission bands at about 400 and 560 nm. The [tau]1 luminescent state was observed to be populated by an exponential process with a resulting rise time constant of 19.6+/-1.9 ns at room temperature. An ultra-fast decay component with a 1 and [tau]2 were determined to be 2.22+/-0.33 [mu]s and 18.0+/-2.59 [mu]s, respectively, while the 400 nm emission band was not observed below -50[deg]C. At +50[deg]C the decay constants were found to be 628 ns (70.5%) and 2.63 [mu]s (29.3%) and both emission bands were present. The scintillation yield of CsI(Tl) was observed to be only slightly temperature dependent between -30 and +50[deg]C, peaking at about -30[deg]C (about 6% above the room temperature yield) and monotonically decreasing above and below this temperature. Four different commercially available CsI(Tl) crystals were used. Minimal variations in the measured scintillation characteristics were observed among these four crystals. Thermoluminescence emissions were observed to have peak yields at -90, -65, -40, +20, and possibly -55[deg]C. The relative magnitudes and number of thermoluminescence peaks were found to vary from crystal to crystal.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30984/1/0000659.pd

    First-principles calculations of the self-trapped exciton in crystalline NaCl

    Full text link
    The atomic and electronic structure of the lowest triplet state of the off-center (C2v symmetry) self-trapped exciton (STE) in crystalline NaCl is calculated using the local-spin-density (LSDA) approximation. In addition, the Franck-Condon broadening of the luminescence peak and the a1g -> b3u absorption peak are calculated and compared to experiment. LSDA accurately predicts transition energies if the initial and final states are both localized or delocalized, but 1 eV discrepancies with experiment occur if one state is localized and the other is delocalized.Comment: 4 pages with 4 embeddded figure

    Large active-area superconducting microwire detector array with single-photon sensitivity in the near-infrared

    Full text link
    Superconducting nanowire single photon detectors (SNSPDs) are the highest-performing technology for time-resolved single-photon counting from the UV to the near-infrared. The recent discovery of single-photon sensitivity in micrometer-scale superconducting wires is a promising pathway to explore for large active area devices with application to dark matter searches and fundamental physics experiments. We present 8-pixel 1mm21 mm^2 superconducting microwire single photon detectors (SMSPDs) with 1μm1\,\mathrm{\mu m}-wide wires fabricated from WSi and MoSi films of various stoichiometries using electron-beam and optical lithography. Devices made from all materials and fabrication techniques show saturated internal detection efficiency at 1064 nm in at least one pixel, and the best performing device made from silicon-rich WSi shows single-photon sensitivity in all 8 pixels and saturated internal detection efficiency in 6/8 pixels. This detector is the largest reported active-area SMSPD or SNSPD with near-IR sensitivity published to date, and the first report of an SMSPD array. By further optimizing the photolithography techniques presented in this work, a viable pathway exists to realize larger devices with cm2cm^2-scale active area and beyond

    US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report

    Get PDF
    This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in Dark Matter" held at University of Maryland on March 23-25, 2017.Comment: 102 pages + reference
    corecore