199 research outputs found

    Sandy beaches at the brink

    Get PDF
    Sandy beaches line most of the world’s oceans and are highly valued by society: more people use sandy beaches than any other type of shore. While the economic and social values of beaches are generally regarded as paramount, sandy shores also have special ecological features and contain a distinctive biodiversity that is generally not recognized. These unique ecosystems are facing escalating anthropogenic pressures, chiefly from rapacious coastal development, direct human uses — mainly associated with recreation — and rising sea levels. Beaches are increasingly becoming trapped in a ‘coastal squeeze’ between burgeoning human populations from the land and the effects of global climate change from the sea. Society’s interventions (e.g. shoreline armouring, beach nourishment) to combat changes in beach environments, such as erosion and shoreline retreat, can result in severe ecological impacts and loss of biodiversity at local scales, but are predicted also to have cumulative large-scale consequences worldwide. Because of the scale of this problem, the continued existence of beaches as functional ecosystems is likely to depend on direct conservation efforts. Conservation, in turn, will have to increasingly draw on a consolidated body of ecological theory for these ecosystems. Although this body of theory has yet to be fully developed, we identify here a number of critical research directions that are required to progress coastal management and conservation of sandy beach ecosystems

    Breast Tumor Cells with PI3K Mutation or HER2 Amplification Are Selectively Addicted to Akt Signaling

    Get PDF
    Dysregulated PI3K/Akt signaling occurs commonly in breast cancers and is due to HER2 amplification, PI3K mutation or PTEN inactivation. The objective of this study was to determine the role of Akt activation in breast cancer as a function of mechanism of activation and whether inhibition of Akt signaling is a feasible approach to therapy.A selective allosteric inhibitor of Akt kinase was used to interrogate a panel of breast cancer cell lines characterized for genetic lesions that activate PI3K/Akt signaling: HER2 amplification or PI3K or PTEN mutations in order to determine the biochemical and biologic consequences of inhibition of this pathway. A variety of molecular techniques and tissue culture and in vivo xenograft models revealed that tumors with mutational activation of Akt signaling were selectively dependent on the pathway. In sensitive cells, pathway inhibition resulted in D-cyclin loss, G1 arrest and induction of apoptosis, whereas cells without pathway activation were unaffected. Most importantly, the drug effectively inhibited Akt kinase and its downstream effectors in vivo and caused complete suppression of the growth of breast cancer xenografts with PI3K mutation or HER2 amplification, including models of the latter selected for resistance to Herceptin. Furthermore, chronic administration of the drug was well-tolerated, causing only transient hyperglycemia without gross toxicity to the host despite the pleiotropic normal functions of Akt.These data demonstrate that breast cancers with PI3K mutation or HER2 amplification are selectively dependent on Akt signaling, and that effective inhibition of Akt in tumors is feasible and effective in vivo. These findings suggest that direct inhibition of Akt may represent a therapeutic strategy for breast and other cancers that are addicted to the pathway including tumors with resistant to Herceptin

    Allelic Variation and Differential Expression of the mSIN3A Histone Deacetylase Complex Gene Arid4b Promote Mammary Tumor Growth and Metastasis

    Get PDF
    Accumulating evidence suggests that breast cancer metastatic progression is modified by germline polymorphism, although specific modifier genes have remained largely undefined. In the current study, we employ the MMTV-PyMT transgenic mouse model and the AKXD panel of recombinant inbred mice to identify AT–rich interactive domain 4B (Arid4b; NM_194262) as a breast cancer progression modifier gene. Ectopic expression of Arid4b promoted primary tumor growth in vivo as well as increased migration and invasion in vitro, and the phenotype was associated with polymorphisms identified between the AKR/J and DBA/2J alleles as predicted by our genetic analyses. Stable shRNA–mediated knockdown of Arid4b caused a significant reduction in pulmonary metastases, validating a role for Arid4b as a metastasis modifier gene. ARID4B physically interacts with the breast cancer metastasis suppressor BRMS1, and we detected differential binding of the Arid4b alleles to histone deacetylase complex members mSIN3A and mSDS3, suggesting that the mechanism of Arid4b action likely involves interactions with chromatin modifying complexes. Downregulation of the conserved Tpx2 gene network, which is comprised of many factors regulating cell cycle and mitotic spindle biology, was observed concomitant with loss of metastatic efficiency in Arid4b knockdown cells. Consistent with our genetic analysis and in vivo experiments in our mouse model system, ARID4B expression was also an independent predictor of distant metastasis-free survival in breast cancer patients with ER+ tumors. These studies support a causative role of ARID4B in metastatic progression of breast cancer

    Cytotoxic T lymphocytes that recognize decameric peptide sequences of retinoblastoma binding protein 1 (RBP-1) associated with human breast cancer

    Get PDF
    Retinoblastoma binding protein 1 (RBP-1) is a 143-kDa nuclear phosphoprotein that promotes cell growth by inhibiting the product of retinoblastoma tumour suppressor gene (pRB). We recently found that RBP-1 contains KASIFLK, a heptameric peptide (250–256) recognized by human antibodies and overexpressed by breast cancer cells. In the present study, we demonstrate that human T-cells stimulated with RBP-1 decameric peptides containing KASIFLK can kill human breast cancer cells. These decamers, GLQKASIFLK (247–256) and KASIFLKTRV (250–259), have anchor motifs for both HLA-A2 and HLA-A3. Peripheral blood lymphocytes from 41 normal donors were stimulated by these peptides in culture media containing 15 IU ml−1 interleukin-2, 25 IU ml−1 interleukin-7 and 500 IU ml−1 granulocyte–macrophage colony-stimulating factor. Cytotoxic activity of the T-cells was assessed against autologous B lymphoblastoid cells pulsed with each peptide. Stimulation by GLQKASIFLK generated specific cytotoxic T lymphocyte (CTL) lines from HLA-A2, A3 donors, HLA-A2 donors and HLA-A3 donors. Stimulation with KASIFLKTRV generated specific CTL lines from HLA-A2 donors. No HLA-A2−, A3− CTL line showed specific cytotoxicity against these target cells. These CTL lines were also cytotoxic against HLA-A2 and HLA-A3 breast cancer cells but not against normal fibroblastoid cell lines, normal epidermal cell lines, or a melanoma cell line. RBP-1 peptide antigens may be of clinical significance as a potential peptide vaccine against human breast cancer. © 1999 Cancer Research Campaig

    GSVD Comparison of Patient-Matched Normal and Tumor aCGH Profiles Reveals Global Copy-Number Alterations Predicting Glioblastoma Multiforme Survival

    Get PDF
    Despite recent large-scale profiling efforts, the best prognostic predictor of glioblastoma multiforme (GBM) remains the patient's age at diagnosis. We describe a global pattern of tumor-exclusive co-occurring copy-number alterations (CNAs) that is correlated, possibly coordinated with GBM patients' survival and response to chemotherapy. The pattern is revealed by GSVD comparison of patient-matched but probe-independent GBM and normal aCGH datasets from The Cancer Genome Atlas (TCGA). We find that, first, the GSVD, formulated as a framework for comparatively modeling two composite datasets, removes from the pattern copy-number variations (CNVs) that occur in the normal human genome (e.g., female-specific X chromosome amplification) and experimental variations (e.g., in tissue batch, genomic center, hybridization date and scanner), without a-priori knowledge of these variations. Second, the pattern includes most known GBM-associated changes in chromosome numbers and focal CNAs, as well as several previously unreported CNAs in 3% of the patients. These include the biochemically putative drug target, cell cycle-regulated serine/threonine kinase-encoding TLK2, the cyclin E1-encoding CCNE1, and the Rb-binding histone demethylase-encoding KDM5A. Third, the pattern provides a better prognostic predictor than the chromosome numbers or any one focal CNA that it identifies, suggesting that the GBM survival phenotype is an outcome of its global genotype. The pattern is independent of age, and combined with age, makes a better predictor than age alone. GSVD comparison of matched profiles of a larger set of TCGA patients, inclusive of the initial set, confirms the global pattern. GSVD classification of the GBM profiles of an independent set of patients validates the prognostic contribution of the pattern

    BCR-ABL1-independent PI3Kinase activation causing imatinib-resistance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>BCR-ABL1 </it>translocation occurs in chronic myeloid leukemia (CML) and in 25% of cases with acute lymphoblastic leukemia (ALL). The advent of tyrosine kinase inhibitors (TKI) has fundamentally changed the treatment of CML. However, TKI are not equally effective for treating ALL. Furthermore, <it>de novo </it>or <it>secondary </it>TKI-resistance is a significant problem in CML. We screened a panel of <it>BCR-ABL1 </it>positive ALL and CML cell lines to find models for imatinib-resistance.</p> <p>Results</p> <p>Five of 19 <it>BCR-ABL1 </it>positive cell lines were resistant to imatinib-induced apoptosis (KCL-22, MHH-TALL1, NALM-1, SD-1, SUP-B15). None of the resistant cell lines carried mutations in the kinase domain of <it>BCR-ABL1 </it>and all showed resistance to second generation TKI, nilotinib or dasatinib. STAT5, ERK1/2 and the ribosomal S6 protein (RPS6) are <it>BCR-ABL1 </it>downstream effectors, and all three proteins are dephosphorylated by imatinib in sensitive cell lines. TKI-resistant phosphorylation of RPS6, but responsiveness as regards JAK/STAT5 and ERK1/2 signalling were characteristic for resistant cell lines. PI3K pathway inhibitors effected dephosphorylation of RPS6 in imatinib-resistant cell lines suggesting that an oncogene other than <it>BCR-ABL1 </it>might be responsible for activation of the PI3K/AKT1/mTOR pathway, which would explain the TKI resistance of these cells. We show that the TKI-resistant cell line KCL-22 carries a PI3Kα E545G mutation, a site critical for the constitutive activation of the PI3K/AKT1 pathway. Apoptosis in TKI-resistant cells could be induced by inhibition of AKT1, but not of mTOR.</p> <p>Conclusion</p> <p>We introduce five Philadelphia-chromosome positive cell lines as TKI-resistance models. None of these cell lines carries mutations in the kinase domain of <it>BCR-ABL1 </it>or other molecular aberrations previously indicted in the context of imatinib-resistance. These cell lines are unique as they dephosphorylate ERK1/2 and STAT5 after treatment with imatinib, while PI3K/AKT1/mTOR activity remains unaffected. Inhibition of AKT1 leads to apoptosis in the imatinib-resistant cell lines. In conclusion, Ph+ cell lines show a form of imatinib-resistance attributable to constitutive activation of the PI3K/AKT1 pathway. Mutations in <it>PIK3CA</it>, as observed in cell line KCL-22, or PI3K activating oncogenes may undelie TKI-resistance in these cell lines.</p

    Global identification of genes and pathways regulated by Akt during activation of T helper cells

    Get PDF
    We previously demonstrated that Akt differentially modulated a subset of NF-kB target genes during T cell activation. In the current study, we further explored the broader effects of Akt inhibition on T cell gene induction. Global microarray analysis was used to characterize T helper cell transcriptional responses following antigen receptor stimulation in the absence or presence of Akti1/2 (an allosteric inhibitor which targets Akt1 and Akt2), to identify novel targets dependent upon Akt and obtain a more comprehensive view of Akt-sensitive genes in Th2 helper T cells. Pathway analysis of microarray data from a CD4+ Th2 T cell line revealed effects on gene networks involving ribosomal and T cell receptor signaling pathways associated with Akti1/2 treatment. Using real-time PCR analysis, we validated the differential regulation of several genes in these pathways, including Ier3, Il13, Egr1, Ccl1 and Ccl4, among others. Additionally, transcription factor target gene (TFactS) analysis revealed that NF-kB and Myc were the most significantly enriched transcription factors among Akt-dependent genes after T cell receptor and CD28 stimulation. Akt activation elicited increases in the enrichment of NF-kB- and Myc-targeted genes. The present study has identified a diverse set of genes, and possible mechanisms for their regulation, that are dependent on Akt during T cell activation
    • …
    corecore