214 research outputs found

    The Ability to Change or the Willingness to Change: Stakeholder Interpretation of Adversity

    Get PDF
    Firms often face adverse environmental events which have the potential to destroy the value the firm has created. This study focuses on the occurrence of adverse events. In particular, we address the research question of what organizational and managerial characteristics impact shareholder interpretation of the severity of the adverse event. Building on insights from the resource based and upper echelon theories, we propose that bundles of firm capabilities and top management team composition signal to shareholders the ability of the firm to handle the adverse event and to engage in strategic change. We test our model in the biotechnology industry, and operationalize an adverse event as a drug terminated during a clinical trial. Our results indicate the importance of the top management team on shareholder perception of event severity

    Electrochemical upgrading of biomass-derived 5-hydroxymethylfurfural and furfural over oxygen vacancy-rich NiCoMn-layered double hydroxides nanosheets

    Get PDF
    Rational design of low-cost and active electrocatalysts is crucial for upgrading of biomass-derived chemicals. Here, we report highly efficient catalysts ternary NiCoMn-layered double hydroxides (NiCoMn-LDHs) nanosheets which are oxygen vacancy-rich, produced under controllable conditions for the electrooxidation of both 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) and furfural to furoic acid (FurAc) under mild conditions, respectively. Electrochemical tests showed that the oxidation of HMF and furfural occurred prior to the oxidation of water at lower applied potentials with NiCoMn-LDHs catalysts. High yields of FDCA (91.7%) and FurAc (92.4%) were achieved in 2.5 h using 1.15 nm thick NiCoMn-LDHs nanosheets under the optimal conditions. The mechanism for the superior performance, high durability, and good faradaic efficiency has been elucidated by comprehensive characterization, which confirmed that ultrathin nanosheets expose more Co-NiOOH active sites with oxygen vacancies, facilitating the synergistic effect between HMF and furfural oxidation reaction on Co–Ni and Mn2+ states. The oxygen vacancy-rich NiCoMn-LDHs nanosheet catalysts present a novel and energy-efficient solution to obtain upgraded biochemicals

    Evaluation of Externality Costs in Life-Cycle Optimization of Municipal Solid Waste Management Systems

    Get PDF
    The development of sustainable solid waste management (SWM) systems requires consideration of both economic and environmental impacts. Societal life-cycle costing (S-LCC) provides a quantitative framework to estimate both economic and environmental impacts, by including “budget costs” and “externality costs”. Budget costs include market goods and services (economic impact), whereas externality costs include effects outside the economic system (e.g., environmental impact). This study demonstrates the applicability of S-LCC to SWM life-cycle optimization through a case study based on an average suburban U.S. county of 500 000 people generating 320 000 Mg of waste annually. Estimated externality costs are based on emissions of CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O, PM<sub>2.5</sub>, PM<sub>10</sub>, NO<sub><i>x</i></sub>, SO<sub>2</sub>, VOC, CO, NH<sub>3</sub>, Hg, Pb, Cd, Cr (VI), Ni, As, and dioxins. The results indicate that incorporating S-LCC into optimized SWM strategy development encourages the use of a mixed waste material recovery facility with residues going to incineration, and separated organics to anaerobic digestion. Results are sensitive to waste composition, energy mix and recycling rates. Most of the externality costs stem from SO<sub>2</sub>, NO<sub><i>x</i></sub>, PM<sub>2.5</sub>, CH<sub>4</sub>, fossil CO<sub>2</sub>, and NH<sub>3</sub> emissions. S-LCC proved to be a valuable tool for policy analysis, but additional data on key externality costs such as organic compounds emissions to water would improve future analyses

    Extracting structural information of Au colloids at ultra-dilute concentrations: Identification of growth during nanoparticle immobilization

    Get PDF
    Sol-immobilization is increasingly used to achieve supported metal nanoparticles (NPs) with controllable size and shape; it affords a high degree of control of the metal particle size and yields a narrow particle size distribution. Using state-of-the-art beamlines, we demonstrate how X-ray absorption fine structure (XAFS) techniques are now able to provide accurate structural information on nano-sized colloidal Au solutions at mM concentrations. This study demonstrates: (i) the size of Au colloids can be accurately tuned by adjusting the temperature of reduction, (ii) Au concentration, from 50 mM to 1000 mM, has little influence on the average size of colloidal Au NPs in solution and (iii) the immobilization step is responsible for significant growth in Au particle size, which is further exacerbated at increased Au concentrations. The work presented demonstrates that an increased understanding of the primary steps in sol-immobilization allows improved optimization of materials for catalytic application

    Understanding structure-activity relationships in highly active La promoted Ni catalysts for COâ‚‚ methanation

    Get PDF
    Ni-based catalysts are selective in the hydrogenation of CO_{2} to CH_{4} but their activity and stability need improvement. Herein, we propose a hydrotalcite-derived high loaded Ni-Al_{2}O_{3} catalyst promoted by La. The effect of La on the catalyst properties is investigated and compared with that of Y and Ce. The NiO_{x} rystallite size and basic properties (rather than the nickel reducibility) as well as the catalytic activity depend on the rare-earth element. The La-catalyst achieves a more relevant activity enhancement at low temperature and high space velocity (480 L g^{-1} h^{-1}, CO_{2}/H_{2}/N_{2} = 1/4/1 v/v), high CH_{4} productivity (101 L_{CH4} gNi^{-1} h^{-1}) and stability, even under undiluted feeds. In situ DRIFTS and the characterization of spent catalysts confirm that this enhanced performance is related to the combination of dissociative and associative CO_{2} activation on more reduced, highly dispersed and stable Ni nanoparticles and basic sites in the La_{2}O_{3}-Al_{2}O_{3} matrix, respectively

    The electronic structure, surface properties, and in situ N2O decomposition of mechanochemically synthesised LaMnO3

    Get PDF
    The use of mechanochemistry to prepare catalytic materials is of significant interest; it offers an environmentally beneficial, solvent-free, route and produces highly complex structures of mixed amorphous and crystalline phases. This study reports on the effect of milling atmosphere, either air or argon, on mechanochemically prepared LaMnO3 and the catalytic performance towards N2O decomposition (deN2O). In this work, high energy resolution fluorescence detection (HERFD), X-ray absorption near edge structure (XANES), X-ray emission, and X-ray photoelectron spectroscopy (XPS) have been used to probe the electronic structural properties of the mechanochemically prepared materials. Moreover, in situ studies using near ambient pressure (NAP)-XPS, to follow the materials during catalysis, and high pressure energy dispersive EXAFS studies, to mimic the preparation conditions, have also been performed. The studies show that there are clear differences between the air and argon milled samples, with the most pronounced changes observed using NAP-XPS. The XPS results find increased levels of active adsorbed oxygen species, linked to the presence of surface oxide vacancies, for the sample prepared in argon. Furthermore, the argon milled LaMnO3 shows improved catalytic activity towards deN2O at lower temperatures compared to the air milled and sol-gel synthesised LaMnO3. Assessing this improved catalytic behaviour during deN2O of argon milled LaMnO3 by in situ NAP-XPS suggests increased interaction of N2O at room temperature within the O 1s region. This study further demonstrates the complexity of mechanochemically prepared materials and through careful choice of characterisation methods how their properties can be understood

    Controlling the Production of Acid Catalyzed Products of Furfural Hydrogenation by Pd/TiO2

    Get PDF
    We demonstrate a modified sol-immobilization procedure using (MeOH)x/(H2O)1-x solvent mixtures to prepare Pd/TiO2 catalysts that are able to reduce the formation of acid catalyzed products, e. g. ethers, for the hydrogenation of furfural. Transmission electron microscopy found a significant increase in polyvinyl alcohol (PVA) deposition at the metal-support interface and temperature programmed reduction found a reduced uptake of hydrogen, compared to an established Pd/TiO2 preparation. We propose that the additional PVA hinders hydrogen spillover onto the TiO2 support and limits the formation of Brønsted acid sites, required to produce ethers. Elsewhere, the new preparation route was able to successfully anchor colloidal Pd to the TiO2 surface, without the need for acidification. This work demonstrates the potential for minimizing process steps as well as optimizing catalyst selectivity – both important objectives for sustainable chemistry
    • …
    corecore