738 research outputs found
Stable multiple-charged localized optical vortices in cubic-quintic nonlinear media
The stability of two-dimensional bright vortex solitons in a media with
focusing cubic and defocusing quintic nonlinearities is investigated
analytically and numerically. It is proved that above some critical beam powers
not only one- and two-charged but also multiple-charged stable vortex solitons
do exist. A vortex soliton occurs robust with respect to symmetry-breaking
modulational instability in the self-defocusing regime provided that its radial
profile becomes flattened, so that a self-trapped wave beam gets a pronounced
surface. It is demonstrated that the dynamics of a slightly perturbed stable
vortex soliton resembles an oscillation of a liquid stream having a surface
tension. Using the idea of sustaining effective surface tension for spatial
vortex soliton in a media with competing nonlinearities the explanation of a
suppression of the modulational instability is proposed.Comment: 4 pages, 3 figures. Submitted to Journal of Optics A. The proceedings
of the workshop NATO ARW, Kiev 2003 Singular Optics 200
H-T Phase Diagram of Rare-Earth -- Transition Metal Alloy in the Vicinity of the Compensation Point
Anomalous hysteresis loops of ferrimagnetic amorphous alloys in high magnetic
field and in the vicinity of the compensation temperature have so far been
explained by sample inhomogeneities. We obtain H-T magnetic phase diagram for
ferrimagnetic GdFeCo alloy using a two-sublattice model in the paramagnetic
rare-earth ion approximation and taking into account rare-earth (Gd) magnetic
anisotropy. It is shown that if the magnetic anisotropy of the -sublattice
is larger than that of the -sublattice, the tricritical point can be at
higher temperature than the compensation point. The obtained phase diagram
explains the observed anomalous hysteresis loops as a result of high-field
magnetic phase transition, the order of which changes with temperature. It also
implies that in the vicinity of the magnetic compensation point the shape of
magnetic hysteresis loop is strongly temperature dependent.Comment: 8 pages, 3 figure
Selection Rules for All-Optical Magnetic Recording in Iron Garnet
Finding an electronic transition a subtle excitation of which can launch
dramatic changes of electric, optical or magnetic properties of media is one of
the long-standing dreams in the field of photo-induced phase transitions [1-5].
Therefore the discovery of the magnetization switching only by a femtosecond
laser pulse [6-10] triggered intense discussions about mechanisms responsible
for these laser-induced changes. Here we report the experimentally revealed
selection rules on polarization and wavelengths of ultrafast photo-magnetic
recording in Co-doped garnet film and identify the workspace of the parameters
(magnetic damping, wavelength and polarization of light) allowing this effect.
The all-optical magnetic switching under both single pulse and multiple-pulse
sequences can be achieved at room temperature, in narrow spectral ranges with
light polarized either along or crystallographic axes of the
garnet. The revealed selection rules indicate that the excitations responsible
for the coupling of light to spins are d-electron transitions in octahedral and
tetrahedral Co-sublattices, respectively
Tracking azimuthons in nonlocal nonlinear media
We study the formation of azimuthons, i.e., rotating spatial solitons, in
media with nonlocal focusing nonlinearity. We show that whole families of these
solutions can be found by considering internal modes of classical non-rotating
stationary solutions, namely vortex solitons. This offers an exhaustive method
to identify azimuthons in a given nonlocal medium. We demonstrate formation of
azimuthons of different vorticities and explain their properties by considering
the strongly nonlocal limit of accessible solitons.Comment: 11 pages, 7 figure
Solitons in nonlocal nonlinear media: exact results
We investigate the propagation of one-dimensional bright and dark spatial
solitons in a nonlocal Kerr-like media, in which the nonlocality is of general
form. We find an exact analytical solution to the nonlinear propagation
equation in the case of weak nonlocality. We study the properties of these
solitons and show their stability.Comment: 9 figures, submitted to Phys. Rev.
Stability of two-dimensional spatial solitons in nonlocal nonlinear media
We discuss existence and stability of two-dimensional solitons in media with
spatially nonlocal nonlinear response. We show that such systems, which include
thermal nonlinearity and dipolar Bose Einstein condensates, may support a
variety of stationary localized structures - including rotating spatial
solitons. We also demonstrate that the stability of these structures critically
depends on the spatial profile of the nonlocal response function.Comment: 8 pages, 9 figure
Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media
We present an overview of recent advances in the understanding of optical
beams in nonlinear media with a spatially nonlocal nonlinear response. We
discuss the impact of nonlocality on the modulational instability of plane
waves, the collapse of finite-size beams, and the formation and interaction of
spatial solitons.Comment: Review article, will be published in Journal of Optics B, special
issue on Optical Solitons, 6 figure
- …
