451 research outputs found

    Crystal structures and freezing of dipolar fluids

    Full text link
    We investigate the crystal structure of classical systems of spherical particles with an embedded point dipole at T=0. The ferroelectric ground state energy is calculated using generalizations of the Ewald summation technique. Due to the reduced symmetry compared to the nonpolar case the crystals are never strictly cubic. For the Stockmayer (i.e., Lennard-Jones plus dipolar) interaction three phases are found upon increasing the dipole moment: hexagonal, body-centered orthorhombic, and body-centered tetragonal. An even richer phase diagram arises for dipolar soft spheres with a purely repulsive inverse power law potential rn\sim r^{-n}. A crossover between qualitatively different sequences of phases occurs near the exponent n=12n=12. The results are applicable to electro- and magnetorheological fluids. In addition to the exact ground state analysis we study freezing of the Stockmayer fluid by density-functional theory.Comment: submitted to Phys. Rev.

    Abnormal expression of p27kip1 protein in levator ani muscle of aging women with pelvic floor disorders – a relationship to the cellular differentiation and degeneration

    Get PDF
    BACKGROUND: Pelvic floor disorders affect almost 50% of aging women. An important role in the pelvic floor support belongs to the levator ani muscle. The p27/kip1 (p27) protein, multifunctional cyclin-dependent kinase inhibitor, shows changing expression in differentiating skeletal muscle cells during development, and relatively high levels of p27 RNA were detected in the normal human skeletal muscles. METHODS: Biopsy samples of levator ani muscle were obtained from 22 symptomatic patients with stress urinary incontinence, pelvic organ prolapse, and overlaps (age range 38–74), and nine asymptomatic women (age 31–49). Cryostat sections were investigated for p27 protein expression and type I (slow twitch) and type II (fast twitch) fibers. RESULTS: All fibers exhibited strong plasma membrane (and nuclear) p27 protein expression. cytoplasmic p27 expression was virtually absent in asymptomatic women. In perimenopausal symptomatic patients (ages 38–55), muscle fibers showed hypertrophy and moderate cytoplasmic p27 staining accompanied by diminution of type II fibers. Older symptomatic patients (ages 57–74) showed cytoplasmic p27 overexpression accompanied by shrinking, cytoplasmic vacuolization and fragmentation of muscle cells. The plasma membrane and cytoplasmic p27 expression was not unique to the muscle cells. Under certain circumstances, it was also detected in other cell types (epithelium of ectocervix and luteal cells). CONCLUSIONS: This is the first report on the unusual (plasma membrane and cytoplasmic) expression of p27 protein in normal and abnormal human striated muscle cells in vivo. Our data indicate that pelvic floor disorders are in perimenopausal patients associated with an appearance of moderate cytoplasmic p27 expression, accompanying hypertrophy and transition of type II into type I fibers. The patients in advanced postmenopause show shrinking and fragmentation of muscle fibers associated with strong cytoplasmic p27 expression

    Experimentelle und numerische Modellierung der hydraulischen Stabilität von geotextilen Sandcontainern für Küstenschutzwerke

    Get PDF
    More versatile materials and innovative solutions are required for the design of new, cost effective shore protection structures as well as for the reinforcement of existing threatened coastal barriers, including dune reinforcement and scour protection. Geotextile Sand Containers (GSC) is a relatively low cost, soft and reversible solution for the above problem with a history of more than 50 years in hydraulic and marine applications. Nevertheless, GSC is still an emerging technology and no proper guidelines are available for the design of GSC-structures on a sound scientific base. This PhD study attempts to evaluate the effect of the most important engineering properties of GSCs on the hydraulic stability of GSC-structures and to develop new formulae for the hydraulic stability of crest GSCs of submerged/low-crested GSC-structures. First, the present knowledge related to the engineering properties of GSCs and their effects on the stability of GSC-structures and the existing hydraulic stability formulae for GSC-structures were critically reviewed. Second, four series of especially designed laboratory experiments, which allowed us to have an insight into the influence of the above mentioned properties on the stability of GSC-structures and also to obtain the required parameters for the numerical modelling of their stability were performed. Experimental investigations consisted of two types of laboratory experiments (drop tests and pullout tests), small scale wave flume tests (hydraulic stability tests) and hydraulic flume tests (permeability tests). Third, numerical modelling of GSC-structures was conducted using the weakly coupled RANS-VOF model and FEM-DEM models. Finally, combining both the experimental and numerical results, new stability curves and simple formulae were developed for the hydraulic stability of crest GSCs. This newly developed stability curves and stability formulae are expected to foster the applications of GSC structures for coastal protection.Vielseitige und innovative Lösungen für die Bemessung effektiver Küstenschutzbauwerke sowie Verstärkung existierender, bedrohter Küstenbarrieren werden benötigt. Dies beinhaltet auch Dünenverstärkungen und Kolkschutzmaßnahmen. Sandcontainer aus Geotextilien (GSC) sind eine günstige, flexible und reversible Lösung, die schon mehr als 50 Jahre im marinen und wasserbaulichen Bereich Anwendung findet. Trotzdem befinden sich GSCs immer noch in der Entwicklung und es sind bisher keine Richtlinien zur Bemessung von GSC-Bauwerken auf Grundlage wissenschaftlicher Erkenntnisse vorhanden. Die vorliegende Arbeit ist fokussiert auf die Evaluierung der Einflüsse der wichtigsten Eigenschaften auf die hydraulische Stabilität von GSC-Bauwerken sowie der Entwicklung eines neuen Ansatzes zur Vorhersage der hydraulischen Stabilität von Kronen-GSCs von Unterwasser- bzw. sehr niedrigen GSC- Bauwerken. Zunächst wurde der Wissensstand zu den betreffenden Eigenschaften von GSCs und ihrem Einfluss auf die Stabilität von GSC-Bauwerken und bestehende hydraulische Stabilitätsansätze kritisch bewertet. Anschließend wurden vier speziell entwickelte Experimente durchgeführt, welche Einblick in den Einfluss der oben genannten Eigenschaften auf GSC-Bauwerke gewährte und die Randbedingung für die numerische Modellierung der Stabilität festlegte. Unterschiedliche Arten von Experimenten wurden durchgeführt: zwei Laborexperimente (Fall- und Zugversuche), kleinmaßstäbliche Wellenkanalversuche (hydraulische Stabilität) und Versuche im Strömungskanal (Durchlässigkeit). Weiterhin wurden numerische Simulationen der GSC-Bauwerke mit Hilfe eines schwach gekoppelten RANS-VOF und FEM-DEM Modells durchgeführt. Zuletzt wurden die Ergebnisse der experimentellen und numerischen Untersuchungen zusammengeführt und neue Stabilitätskurven und einfache Berechnungsansätze für die hydraulische Stabilität von Kronen-GSCs entwickelt

    A Bayesian inverse dynamic approach for impulsive wave loading reconstruction: Theory, laboratory and field application

    Get PDF
    The measurement of wave forces acting on marine structures is a complicated task, both during physical experiments and, even more so, in the field. Force transducers adopted in laboratory experiments require a minimum level of structural movement, thus violating the main assumption of fully rigid structure and introducing a dynamic response of the system. Sometimes the induced vibrations are so intense that they completely nullify the reliability of the experiments. On-site, it is even more complex, since there are no force transducers of the size and capacity able to measure such massive force intensity acting over the very large domain of a marine structure. To this end, this investigation proposes a Bayesian methodology aimed to remove the undesired effects from the directly (laboratory applications) or indirectly (field applications) measured wave forces. The paper presents three applications of the method: i) a theoretical application on a synthetic signal for which MATLAB® procedures are provided, ii) an experimental application on laboratory data collected during experiments aimed to model broken wave loading on a cylinder upon a shoal and iii) a field application designed to reconstruct the wave force that generated recorded vibrations on the Wolf Rock lighthouse during Hurricane Ophelia. The proposed methodology allows the inclusion of existing information on breaking and broken wave forces through the process-based informative prior distributions, while it also provides the formal framework for uncertainty quantification of the results through the posterior distribution. Notable findings are that the broken wave loading shows similar features for both laboratory and field data. The load time series is characterised by an initial impulsive component constituted by two peaks and followed by a delayed smoother one. The first two peaks are due to the initial impact of the aerated front and to the sudden deceleration of the falling water mass previously upward accelerated by the initial impact. The third, less intense peak, is due to the interaction between the cylinder and remaining water mass carried by the individual wave. Finally, the method allows to properly identify the length of the impulsive loading component. The implications of this length on the use of the impulse theory for the assessment or design of marine structures are discussed

    Integrins as therapeutic targets: lessons and opportunities.

    Get PDF
    The integrins are a large family of cell adhesion molecules that are essential for the regulation of cell growth and function. The identification of key roles for integrins in a diverse range of diseases, including cancer, infection, thrombosis and autoimmune disorders, has revealed their substantial potential as therapeutic targets. However, so far, pharmacological inhibitors for only three integrins have received marketing approval. This article discusses the structure and function of integrins, their roles in disease and the chequered history of the approved integrin antagonists. Recent advances in the understanding of integrin function, ligand interaction and signalling pathways suggest novel strategies for inhibiting integrin function that could help harness their full potential as therapeutic targets

    In vitro method to evaluate virus competition between BVDV-1 and BVDV-2 strains using the PrimeFlow RNA assay

    Get PDF
    Bovine viral diarrhea viruses (BVDV), segregated in BVDV-1 and BVDV-2 species, lead to substantial economic losses to the cattle industry worldwide. It has been hypothesized that there could be differences in level of replication, pathogenesis and tissue tropism between BVDV-1 and BVDV-2 strains. Thus, this study developed an in vitro method to evaluate virus competition between BVDV-1 and BVDV-2 strains. To this end the competitive dynamics of BVDV-1a, BVDV-1b, and BVDV-2a strains in cell cultures was evaluated by a PrimeFlow RNA assay. Similar results were observed in this study, as was observed in an earlier in vivo transmission study. Competitive exclusion was observed as the BVDV-2a strains dominated and excluded the BVDV-1a and BVDV-1b strains. The in vitro model developed can be used to identify viral variations that result in differences in frequency of subgenotypes detected in the field, vaccine failure, pathogenesis, and strain dependent variation in immune responses

    Multivariate analysis reveals that BVDV field isolates do not show a close VN-based antigenic relationship to US vaccine strains

    Get PDF
    Objective Evaluate bovine viral diarrhea virus (BVDV) antigenicity by using virus neutralization titers (VNT) analyzed using the principal component analysis (PCA) from antisera generated against US-based vaccine strains against both US-origin field isolates and non-US-origin field isolates. Results Data from both independent analyses demonstrated that several US-origin and non-US-origin BVDV field isolates appear to be antigenically divergent from the US-based vaccine strains. Results from the combined analysis provided greater insight into the antigenic diversity observed among BVDV isolates. Data from this study further support genetic assignment into BVDV subgenotypes, as well as strains within subgenotypes is not representative of antigenic relatedness. PCA highlights isolates that are antigenically divergent from members of the same species and subgenotype and conversely isolates that belong to different subgenotypes have similar antigenic characteristics when using antisera from US-based vaccine isolates

    Rocking of offshore lighthouses under extreme wave impacts: Limit analysis, analytic formulations and distinct element method

    Get PDF
    This study describes the structural response of historic lighthouses to extreme wave impacts. Located offshore on exposed rocks, 19th Century lighthouses were built with large interlocked granite blocks and have survived weathering for nearly two centuries. Under extreme wave impacts, lighthouses of this structural typology may uplift and rock, whereas sliding is prevented by the vertical interlocking. The uplift and sliding thresholds calculated with the limit analysis method reveal why this structural system is capable of bearing extreme wave impacts without failure. The ingenious vertical keying is proven to be a major characteristic that contributes to the resilience of these lighthouses. The structural response is explained with the use of analytic formulations of the rocking motion. Detailed analysis of the response to wave impact is conducted with reference to Wolf Rock lighthouse. The impact wave corresponding to a 250-year effective return period is identified using non-stationary Bayesian extreme analysis. Moreover, wave flume tests on a scaled cylindrical structure were performed to identify the wave impact force time-history shapes. Based on two waves: a theoretical time-history based on existing models in the literature and the measured time-histories from small-scale experiments, a series of synthetic force time-history sequences are generated for the purposes of a parametric analysis. This parametric analysis, with the Distinct Element Method, using the commercial software 3DEC, reveals the influence of the duration and shape of the force time-history function. For impacts with the same impulse values, shorter time impacts produce the most intense opening of joints, despite causing smaller horizontal displacements. Furthermore, variability in the structural response is revealed even for impacts of the same impulse, duration and maximum force but different shape of the force time-history

    Cross-tolerance to abiotic stresses in halophytes: Application for phytoremediation of organic pollutants

    No full text
    International audienceHalopytes are plants able to tolerate high salt concentrations but no clear definition was retained for them. In literature, there are more studies that showed salt-enhanced tolerance to other abiotic stresses compared to investigations that found enhanced salt tolerance by other abiotic stresses in halophytes. The phenomenon by which a plant resistance to a stress induces resistance to another is referred to as cross-tolerance. In this work, we reviewed cross-tolerance in halophytes at the physiological, biochemical, and molecular levels. A special attention was accorded to the cross-tolerance between salinity and organic pollutants that could allow halophytes a higher potential of xenobiotic phytoremediation in comparison with glycophytes
    corecore