2,012 research outputs found

    Robust, High-speed, All-Optical Atomic Magnetometer

    Get PDF
    A self-oscillating magnetometer based on the nonlinear magneto-optical rotation effect with separate modulated pump and unmodulated probe beams is demonstrated. This device possesses a bandwidth exceeding 1\khz. Pump and probe are delivered by optical fiber, facilitating miniaturization and modularization. The magnetometer has been operated both with vertical-cavity surface-emitting lasers (VCSELs), which are well suited to portable applications, and with conventional edge-emitting diode lasers. A sensitivity of around 3nG3 {\rm nG} is achieved for a measurement time of 1\s.Comment: 8 pages, 5 fig

    Atomistic subsemirings of the lattice of subspaces of an algebra

    Full text link
    Let A be an associative algebra with identity over a field k. An atomistic subsemiring R of the lattice of subspaces of A, endowed with the natural product, is a subsemiring which is a closed atomistic sublattice. When R has no zero divisors, the set of atoms of R is endowed with a multivalued product. We introduce an equivalence relation on the set of atoms such that the quotient set with the induced product is a monoid, called the condensation monoid. Under suitable hypotheses on R, we show that this monoid is a group and the class of k1_A is the set of atoms of a subalgebra of A called the focal subalgebra. This construction can be iterated to obtain higher condensation groups and focal subalgebras. We apply these results to G-algebras for G a group; in particular, we use them to define new invariants for finite-dimensional irreducible projective representations.Comment: 14 page

    Optimization of an axial fan for air cooled condensers

    Get PDF
    We report on the low noise optimization of an axial fan specifically designed for the cooling of CSP power plants. The duty point presents an uncommon combination of a load coefficient of 0.11, a flow coefficient of 0.23 and a static efficiency ηstat > 0.6. Calculated fan Reynolds number is equal to Re = 2.85 x 107. Here we present a process used to optimize and numerically verify the fan performance. The optimization of the blade was carried out with a Python code through a brute-force-search algorithm. Using this approach the chord and pitch distributions of the original blade are varied under geometrical constraints, generating a population of over 24000 different possible individuals. Each individual was then tested using an axisymmetric Python code. The software is based on a blade element axisymmetric principle whereby the rotor blade is divided into a number of streamlines. For each of these streamlines, relationships for velocity and pressure are derived from conservation laws for mass, tangential momentum and energy of incompressible flows. The final geometry was eventually chosen among the individuals with the maximum efficiency. The final design performance was then validated through with a CFD simulation. The simulation was carried out using a RANS approach, with the cubic k -  low Reynolds turbulence closure of Lien et al. The numerical simulation was able to verify the air performance of the fan and was used to derive blade-to-blade distributions of design parameters such as flow deviation, velocity components, specific work and diffusion factor of the optimized blade. All the computations were performed in OpenFoam, an open source C++- based CFD library. This work was carried out under MinWaterCSP project, funded by EU H2020 programme

    The Bulge-Disk Orthogonal Decoupling in Galaxies: NGC 4698

    Get PDF
    The R-band isophotal map of the Sa galaxy NGC 4698 shows that the inner region of the bulge structure is elongated perpendicularly to the major axis of the disk, this is also true for the outer parts of the bulge if a parametric photometric decomposition is adopted. At the same time the stellar component is characterized by an inner velocity gradient and a central zero-velocity plateau along the minor and major axis of the disk respectively. This remarkable geometric and kinematic decoupling suggests that a second event occurred in the formation history of this galaxy.Comment: 12 pages, LaTex, with 4 PostScript figures. Accepted for publication in The Astrophysical Journal Letter

    Multi-mode TES bolometer optimization for the LSPE-SWIPE instrument

    Full text link
    In this paper we explore the possibility of using transition edge sensor (TES) detectors in multi-mode configuration in the focal plane of the Short Wavelength Instrument for the Polarization Explorer (SWIPE) of the balloon-borne polarimeter Large Scale Polarization Explorer (LSPE) for the Cosmic Microwave Background (CMB) polarization. This study is motivated by the fact that maximizing the sensitivity of TES bolometers, under the augmented background due to the multi-mode design, requires a non trivial choice of detector parameters. We evaluate the best parameter combination taking into account scanning strategy, noise constraints, saturation power and operating temperature of the cryostat during the flight.Comment: in Journal of Low Temperature Physics, 05 January 201

    Structure and Subhalo Population of Halos in a Self-Interacting Dark Matter Cosmology

    Full text link
    We study the structure of Milky Way (MW)- and cluster-sized halos in a Lambda Cold Dark Matter (CDM) cosmology with self-interacting (SI) dark particles. The cross section per unit of particle mass has the form sigma = sig_0(1/v_100)^alpha, where sig_0 is a constant in units of cm^2/gr and v_100 is the relative velocity in units of 100 km/s. Different values for sigma with alpha= 0 or 1 were used. For small values of sigma = const. (sig_0<0.5), the core density of the halos at z=0 is typically higher at a given mass for lower values of sig_0 or, at a given sig_0, for lower masses. For values of sig_0 as high as 3.0, the halos may undergo the gravothermal catastrophe before z=0. When alpha = 1, the core density of cluster- and MW-sized halos is similar. Using sigma = 0.5-1.0x(1/v_100), our predictions agree with the central densities and the core scaling laws of halos both inferred from the observations of dwarf and LSB galaxies and clusters of galaxies. The cumulative Vmax-functions of subhalos in MW-sized halos with (sig_0,alpha) = (0.1,0.0), (0.5,0.0) and (0.5,1.0) agree roughly with observations (luminous satellites) for Vmax > 30 km/s, while at Vmax = 20 km/s the functions are a factor 5-8 higher, similar to the CDM predictions. The halos with SI have slightly more specific angular momentum at a given mass shell and are rounder than their CDM counterparts. We conclude that the introduction of SI particles with sigma \propto 1/v_100 may remedy the cuspy core problem of the CDM cosmogony, while the subhalo population number remains similar to that of the CDM halos.Comment: To appear in ApJ, December 20, 2002. We added plots showing the evolution of the heat capacity profile for halos in the core expansion and gravothermal catastrophe phases. Minor changes in the text were introduce

    Chandra observations of NGC4698: a Seyfert-2 with no absorption

    Full text link
    We present Chandra ACIS-S observations of the enigmatic Seyfert-2 galaxy NGC4698. This object together with several other bona-fide Seyfert-2 galaxies show no absorption in the low spatial resolution ASCA data, in contrast to the standard unification models. Our Chandra observations of NGC4698 probe directly the nucleus allowing us to check whether nearby sources contaminate the ASCA spectrum. Indeed, the Chandra observations show that the ASCA spectrum is dominated by two nearby AGN. The X-ray flux of NGC4698 is dominated by a nuclear source with luminosity L(0.3-8 keV) ~ 10^39, erg s-1 coincident with the radio nucleus. Its spectrum is well represented by a power-law, ~ 2.2, obscured by a small column density of 5x10^20 cm-2 suggesting that NGC4698 is an atypical Seyfert galaxy. On the basis of its low luminosity we then interpret NGC4698 as a Seyfert galaxy which lacks a broad-line region.Comment: 12 pages, to appear in Ap

    The Infrared Telescope Facility (IRTF) spectral library: spectral diagnostics for cool stars

    Full text link
    The near-infrared (NIR) wavelength range offers some unique spectral features, and it is less prone to the extinction than the optical one. Recently, the first flux calibrated NIR library of cool stars from the NASA Infrared Telescope Facility (IRTF) have become available, and it has not been fully exploited yet. We want to develop spectroscopic diagnostics for stellar physical parameters based on features in the wavelength range 1-5 micron. In this work we test the technique in the I and K bands. The study of the Y, J, H, and L bands will be presented in the following paper. An objective method for semi-empirical definition of spectral features sensitive to various physical parameters is applied to the spectra. It is based on sensitivity map--i.e., derivative of the flux in the spectra with respect to the stellar parameters at a fixed wavelength. New optimized indices are defined and their equivalent widths (EWs) are measured. A number of sensitive features to the effective temperature and surface gravity are re-identified or newly identified clearly showing the reliability of the sensitivity map analysis. The sensitivity map allows to identify the best bandpass limits for the line and nearby continuum. It reliably predicts the trends of spectral features with respect to a given physical parameter but not their absolute strengths. Line blends are easy to recognize when blended features have different behavior with respect to some physical stellar parameter. The use of sensitivity map is therefore complementary to the use of indices. We give the EWs of the new indices measured for the IRTF star sample. This new and homogeneous set of EWs will be useful for stellar population synthesis models and can be used to get element-by-element abundances for unresolved stellar population studies in galaxies.Comment: 46 pages, 27 figures, accepted for publication on Astronomy and Astrophysic

    Near-infrared spectroscopic indices for unresolved stellar populations: I. Template galaxy spectra

    Get PDF
    Context. A new generation of spectral synthesis models has been developed in recent years, but there is no matching set of template galaxy spectra, in terms of quality and resolution, for testing and refining the new models. Aims: Our main goal is to find and calibrate new near-infrared spectral indices along the Hubble sequence of galaxies which will be used to obtain additional constraints to the population analysis based on medium-resolution integrated spectra of galaxies. Methods: Spectra of previously studied and well-understood galaxies with relatively simple stellar populations (e.g., ellipticals or bulge dominated galaxies) are needed to provide a baseline data set for spectral synthesis models. Results: X-shooter spectra spanning the optical and infrared wavelengths (350-2400 nm) of bright nearby elliptical galaxies with a resolving power of R \u2dc 4000-5400 were obtained. Heliocentric systemic velocity, velocity dispersion, and Mg, Fe, and H\u3b2 line-strength indices are presented. Conclusions: We present a library of very-high-quality spectra of galaxies covering a large range of age, metallicity, and morphological type. Such a dataset of spectra will be crucial to addressing important questions of the modern investigation concerning galaxy formation and evolution

    Search for plant biomagnetism with a sensitive atomic magnetometer

    Get PDF
    We report what we believe is the first experimental limit placed on plant biomagnetism. Measurements with a sensitive atomic magnetometer were performed on the Titan arum (Amorphophallus titanum) inflorescence, known for its fast bio-chemical processes while blooming. We find that the surface magnetic field from these processes, projected along the Earth's magnetic field, and measured at the surface of the plant, is less then ~0.6uG.Comment: 5 pages, 5 figures, to be published - modified one sentence in abstract + reformatted fi
    corecore