105 research outputs found

    Invariances in variance estimates

    Full text link
    We provide variants and improvements of the Brascamp-Lieb variance inequality which take into account the invariance properties of the underlying measure. This is applied to spectral gap estimates for log-concave measures with many symmetries and to non-interacting conservative spin systems

    The (B) conjecture for uniform measures in the plane

    Full text link
    We prove that for any two centrally-symmetric convex shapes K,LR2K,L \subset \mathbb{R}^2, the function tetKLt \mapsto |e^t K \cap L| is log-concave. This extends a result of Cordero-Erausquin, Fradelizi and Maurey in the two dimensional case. Possible relaxations of the condition of symmetry are discussed.Comment: 10 page

    The openness conjecture and complex Brunn-Minkowski inequalities

    Full text link
    We discuss recent versions of the Brunn-Minkowski inequality in the complex setting, and use it to prove the openness conjecture of Demailly and Koll\'ar.Comment: This is an account of the results in arXiv:1305.5781 together with some background material. It is based on a lecture given at the Abel symposium in Trondheim, June 2013. 13 page

    Optimal Concentration of Information Content For Log-Concave Densities

    Full text link
    An elementary proof is provided of sharp bounds for the varentropy of random vectors with log-concave densities, as well as for deviations of the information content from its mean. These bounds significantly improve on the bounds obtained by Bobkov and Madiman ({\it Ann. Probab.}, 39(4):1528--1543, 2011).Comment: 15 pages. Changes in v2: Remark 2.5 (due to C. Saroglou) added with more general sufficient conditions for equality in Theorem 2.3. Also some minor corrections and added reference

    Generalized Ricci Curvature Bounds for Three Dimensional Contact Subriemannian manifolds

    Get PDF
    Measure contraction property is one of the possible generalizations of Ricci curvature bound to more general metric measure spaces. In this paper, we discover sufficient conditions for a three dimensional contact subriemannian manifold to satisfy this property.Comment: 49 page

    Mass Transportation on Sub-Riemannian Manifolds

    Get PDF
    We study the optimal transport problem in sub-Riemannian manifolds where the cost function is given by the square of the sub-Riemannian distance. Under appropriate assumptions, we generalize Brenier-McCann's Theorem proving existence and uniqueness of the optimal transport map. We show the absolute continuity property of Wassertein geodesics, and we address the regularity issue of the optimal map. In particular, we are able to show its approximate differentiability a.e. in the Heisenberg group (and under some weak assumptions on the measures the differentiability a.e.), which allows to write a weak form of the Monge-Amp\`ere equation

    A glimpse into the differential topology and geometry of optimal transport

    Full text link
    This note exposes the differential topology and geometry underlying some of the basic phenomena of optimal transportation. It surveys basic questions concerning Monge maps and Kantorovich measures: existence and regularity of the former, uniqueness of the latter, and estimates for the dimension of its support, as well as the associated linear programming duality. It shows the answers to these questions concern the differential geometry and topology of the chosen transportation cost. It also establishes new connections --- some heuristic and others rigorous --- based on the properties of the cross-difference of this cost, and its Taylor expansion at the diagonal.Comment: 27 page

    A user's guide to optimal transport

    Get PDF
    This text is an expanded version of the lectures given by the first author in the 2009 CIME summer school of Cetraro. It provides a quick and reasonably account of the classical theory of optimal mass transportation and of its more recent developments, including the metric theory of gradient flows, geometric and functional inequalities related to optimal transportation, the first and second order differential calculus in the Wasserstein space and the synthetic theory of metric measure spaces with Ricci curvature bounded from below
    corecore