1,465 research outputs found

    Amniotic fluid brain-specific proteins are biomarkers for spinal cord injury in experimental myelomeningocele

    Get PDF
    Myelomeningocele (MMC), the most severe form of spina bifida (SB), causes neurological deficit. Injury to the spinal cord is thought to begin in utero. We investigated whether brain-specific proteins (BSPs) would enable us to monitor the development of MMC-related tissue damage during pregnancy in an animal model with naturally occurring SB (curly tail/loop tail mouse; n = 256). Amniotic fluid levels of neurofilament heavy chain (NfH), glial acidic fibrillary protein (GFAP) and S100B were measured by standard ELISA techniques. The amniotic fluid levels of all BSPs were similar in SB and control mice on embryonic day (E) 12.5 and 14.5, whereas a significant increase was observed for GFAP in SB mice on E16.5. Levels of all BSPs were significantly increased in SB mice on E18.5. The rapid increase in GFAP, paralleled by a moderate increase in NfH and S100B, suggests that spinal cord damage starts to accelerate around E16.5. The macroscopic size of the MMC was related to NfH level on E16.5 and E18.5, suggesting that axonal degeneration is most severe in large MMC. Amniotic fluid BSP measurements may provide important information for balancing the risks and benefits to mother and child of in utero surgery for MMC

    Glycine decarboxylase deficiency causes neural tube defects and features of non-ketotic hyperglycinemia in mice.

    Get PDF
    Glycine decarboxylase (GLDC) acts in the glycine cleavage system to decarboxylate glycine and transfer a one-carbon unit into folate one-carbon metabolism. GLDC mutations cause a rare recessive disease non-ketotic hyperglycinemia (NKH). Mutations have also been identified in patients with neural tube defects (NTDs); however, the relationship between NKH and NTDs is unclear. We show that reduced expression of Gldc in mice suppresses glycine cleavage system activity and causes two distinct disease phenotypes. Mutant embryos develop partially penetrant NTDs while surviving mice exhibit post-natal features of NKH including glycine accumulation, early lethality and hydrocephalus. In addition to elevated glycine, Gldc disruption also results in abnormal tissue folate profiles, with depletion of one-carbon-carrying folates, as well as growth retardation and reduced cellular proliferation. Formate treatment normalizes the folate profile, restores embryonic growth and prevents NTDs, suggesting that Gldc deficiency causes NTDs through limiting supply of one-carbon units from mitochondrial folate metabolism

    Nucleotide precursors prevent folic acid-resistant neural tube defects in the mouse

    Get PDF
    Closure of the neural tube during embryogenesis is a crucial step in development of the central nervous system. Failure of this process results in neural tube defects, including spina bifida and anencephaly, which are among the most common birth defects worldwide. Maternal use of folic acid supplements reduces risk of neural tube defects but a proportion of cases are not preventable. Folic acid is thought to act through folate one-carbon metabolism, which transfers one-carbon units for methylation reactions and nucleotide biosynthesis. Hence suboptimal performance of the intervening reactions could limit the efficacy of folic acid. We hypothesized that direct supplementation with nucleotides, downstream of folate metabolism, has the potential to support neural tube closure. Therefore, in a mouse model that exhibits folic acid-resistant neural tube defects, we tested the effect of specific combinations of pyrimidine and purine nucleotide precursors and observed a significant protective effect. Labelling in whole embryo culture showed that nucleotides are taken up by the neurulating embryo and incorporated into genomic DNA. Furthermore, the mitotic index was elevated in neural folds and hindgut of treated embryos, consistent with a proposed mechanism of neural tube defect prevention through stimulation of cellular proliferation. These findings may provide an impetus for future investigations of supplemental nucleotides as a means to prevent a greater proportion of human neural tube defects than can be achieved by folic acid alone

    Autumn microhabitat breadth differs between family groups of Atlantic salmon parr (Salmo salar) in a small chalk stream

    Get PDF
    The effect of family traits on the microhabitat use by six genetically distinct groups (three in each year of study) of juvenile Atlantic salmon tagged with passive integrated transponder (PIT) tags was studied via PIT-tag detectors installed on the river bed in a small chalk stream of southern England, during Autumn in 2006 and 2007. Canonical correspondence analysis of the molecular and microhabitat data revealed considerable overlap in the microhabitat use of the family groups and notable differences in microhabitat breadth, which was partly influenced by sample size. The data suggest that microhabitat breadth and preferences of wild salmon are influenced by family of origin

    Enabling research with human embryonic and fetal tissue resources

    Get PDF
    Congenital anomalies are a significant burden on human health. Understanding the developmental origins of such anomalies is key to developing potential therapies. The Human Developmental Biology Resource (HDBR), based in London and Newcastle, UK, was established to provide embryonic and fetal material for a variety of human studies ranging from single gene expression analysis to large-scale genomic/transcriptomic studies. Increasingly, HDBR material is enabling the derivation of stem cell lines and contributing towards developments in tissue engineering. Use of the HDBR and other fetal tissue resources discussed here will contribute to the long-term aims of understanding the causation and pathogenesis of congenital anomalies, and developing new methods for their treatment and prevention

    European Non-native Species in Aquaculture Risk Analysis Scheme - a summary of assessment protocols and decision support tools for use of alien species in aquaculture

    Get PDF
    The European Non-native Species in Aquaculture Risk Analysis Scheme (ENSARS) was developed in response to European 'Council Regulation No. 708/2007 of 11 June 2007 concerning use of alien and locally absent species in aquaculture' to provide protocols for identifying and evaluating the potential risks of using non-native species in aquaculture. ENSARS is modular in structure and adapted from non-native species risk assessment schemes developed by the European and Mediterranean Plant Protection Organisation and for the UK. Seven of the eight ENSARS modules contain protocols for evaluating the risks of escape, introduction to and establishment in open waters, of any non-native aquatic organism being used (or associated with those used) in aquaculture, that is, transport pathways, rearing facilities, infectious agents, and the potential organism, ecosystem and socio-economic impacts. A concluding module is designed to summarise the risks and consider management options. During the assessments, each question requires the assessor to provide a response and confidence ranking for that response based on expert opinion. Each module can also be used individually, and each requires a specific form of expertise. Therefore, a multidisciplinary assessment team is recommended for its completion

    Understanding the threats posed by non-native species: public vs. conservation managers.

    Get PDF
    Public perception is a key factor influencing current conservation policy. Therefore, it is important to determine the influence of the public, end-users and scientists on the prioritisation of conservation issues and the direct implications for policy makers. Here, we assessed public attitudes and the perception of conservation managers to five non-native species in the UK, with these supplemented by those of an ecosystem user, freshwater anglers. We found that threat perception was not influenced by the volume of scientific research or by the actual threats posed by the specific non-native species. Media interest also reflected public perception and vice versa. Anglers were most concerned with perceived threats to their recreational activities but their concerns did not correspond to the greatest demonstrated ecological threat. The perception of conservation managers was an amalgamation of public and angler opinions but was mismatched to quantified ecological risks of the species. As this suggests that invasive species management in the UK is vulnerable to a knowledge gap, researchers must consider the intrinsic characteristics of their study species to determine whether raising public perception will be effective. The case study of the topmouth gudgeon Pseudorasbora parva reveals that media pressure and political debate has greater capacity to ignite policy changes and impact studies on non-native species than scientific evidence alone

    Trophic consequences of non-native pumpkinseed Lepomis gibbosus for native pond fishes

    Get PDF
    Introduced non-native fishes can cause considerable adverse impacts on freshwater ecosystems. The pumpkinseed Lepomis gibbosus, a North American centrarchid, is one of the most widely distributed non-native fishes in Europe, having established self-sustaining populations in at least 28 countries, including the U.K. where it is predicted to become invasive under warmer climate conditions. To predict the consequences of increased invasiveness, a field experiment was completed over a summer period using a Control comprising of an assemblage of native fishes of known starting abundance and a Treatment using the same assemblage but with elevated L. gibbosus densities. The trophic consequences of L. gibbosus invasion were assessed with stable isotope analysis and associated metrics including the isotopic niche, measured as standard ellipse area. The isotopic niches of native gudgeon Gobio gobio and roach Rutilus rutilus overlapped substantially with that of non-native L. gibbosus, and were also substantially reduced in size compared to ponds where L. gibbosus were absent. This suggests these native fishes shifted to a more specialized diet in L. gibbosus presence. Both of these native fishes also demonstrated a concomitant and significant reduction in their trophic position in L. gibbosus presence, with a significant decrease also evident in the somatic growth rate and body condition of G. gobio. Thus, there were marked changes detected in the isotopic ecology and growth rates of the native fish in the presence of non-native L. gibbosus. The implications of these results for present and future invaded pond communities are discussed

    The UK risk assessment scheme for all non-native species

    Get PDF
    1. A pest risk assessment scheme, adapted from the EPPO (European and Mediterranean Plant Protection Organisation) scheme, was developed to assess the risks posed to UK species, habitats and ecosystems by non-native taxa. 2. The scheme provides a structured framework for evaluating the potential for non-native organisms, whether intentional or unintentional introductions, to enter, establish, spread and cause significant impacts in all or part of the UK. Specialist modules permit the relative importance of entry pathways, the vulnerability of receptors and the consequences of policies to be assessed and appropriate risk management options to be selected. Spreadsheets for summarising the level of risk and uncertainty, invasive attributes and economic impact were created. In addition, new methods for quantifying economic impact and summarising risk and uncertainty were explored. 3. Although designed for the UK, the scheme can readily be applied elsewhere
    corecore