239 research outputs found
Principal sources and dispersal patterns of suspended particulate matter in nearshore surface waters of the northeast Pacific Ocean and the Hawaiian Islands
The author has identified the following significant results. ERTS-1 multispectral scanner imagery of the nearshore surface waters of the Northeast Pacific Ocean is proving to be a useful tool for determining source and dispersal of suspended particulate matter. The principal sources of the turbid water, seen best on the green and red bands, are river and stream effluents and actively eroding coastlines; secondary sources are waste effluents and production of planktonic organisms, but these may sometimes be masked by the very turbid plumes of suspended sediment being discharged into the nearshore zone during times of high river discharge. The configuration and distribution of the plumes of turbid water also can be used to infer near-surface current directions. Comparison of imagery of the nearshore water off the northern California coast from October 1972 and January 1973 shows a reversal of the near-surface currents, from predominantly south-setting in the fall (California Current) to north-setting in the winter (Davidson Current)
Detectable Clonal Mosaicism from Birth to Old Age and its Relationship to Cancer
Clonal mosaicism for large chromosomal anomalies (duplications, deletions and uniparental disomy) was detected using SNP microarray data from over 50,000 subjects recruited for genome-wide association studies. This detection method requires a relatively high frequency of cells (>5–10%) with the same abnormal karyotype (presumably of clonal origin) in the presence of normal cells. The frequency of detectable clonal mosaicism in peripheral blood is low (<0.5%) from birth until 50 years of age, after which it rises rapidly to 2–3% in the elderly. Many of the mosaic anomalies are characteristic of those found in hematological cancers and identify common deleted regions that pinpoint the locations of genes previously associated with hematological cancers. Although only 3% of subjects with detectable clonal mosaicism had any record of hematological cancer prior to DNA sampling, those without a prior diagnosis have an estimated 10-fold higher risk of a subsequent hematological cancer (95% confidence interval = 6–18)
Untargeted longitudinal analysis of a wellness cohort identifies markers of metastatic cancer years prior to diagnosis.
We analyzed 1196 proteins in longitudinal plasma samples from participants in a commercial wellness program, including samples collected pre-diagnosis from ten cancer patients and 69 controls. For three individuals ultimately diagnosed with metastatic breast, lung, or pancreatic cancer, CEACAM5 was a persistent longitudinal outlier as early as 26.5 months pre-diagnosis. CALCA, a biomarker for medullary thyroid cancer, was hypersecreted in metastatic pancreatic cancer at least 16.5 months pre-diagnosis. ERBB2 levels spiked in metastatic breast cancer between 10.0 and 4.0 months pre-diagnosis. Our results support the value of deep phenotyping seemingly healthy individuals in prospectively inferring disease transitions
Genetic Predisposition Impacts Clinical Changes in a Lifestyle Coaching Program.
Both genetic and lifestyle factors contribute to an individual\u27s disease risk, suggesting a multi-omic approach is essential for personalized prevention. Studies have examined the effectiveness of lifestyle coaching on clinical outcomes, however, little is known about the impact of genetic predisposition on the response to lifestyle coaching. Here we report on the results of a real-world observational study in 2531 participants enrolled in a commercial Scientific Wellness program, which combines multi-omic data with personalized, telephonic lifestyle coaching. Specifically, we examined: 1) the impact of this program on 55 clinical markers and 2) the effect of genetic predisposition on these clinical changes. We identified sustained improvements in clinical markers related to cardiometabolic risk, inflammation, nutrition, and anthropometrics. Notably, improvements in HbA1c were akin to those observed in landmark trials. Furthermore, genetic markers were associated with longitudinal changes in clinical markers. For example, individuals with genetic predisposition for higher LDL-C had a lesser decrease in LDL-C on average than those with genetic predisposition for average LDL-C. Overall, these results suggest that a program combining multi-omic data with lifestyle coaching produces clinically meaningful improvements, and that genetic predisposition impacts clinical responses to lifestyle change
Genome-wide association study of dental caries in the Hispanic Communities Health Study/Study of Latinos (HCHS/SOL)
Dental caries is the most common chronic disease worldwide, and exhibits profound disparities in the USA with racial and ethnic minorities experiencing disproportionate disease burden. Though heritable, the specific genes influencing risk of dental caries remain largely unknown. Therefore, we performed genome-wide association scans (GWASs) for dental caries in a population-based cohort of 12 000 Hispanic/Latino participants aged 18–74 years from the HCHS/SOL. Intra-oral examinations were used to generate two common indices of dental caries experience which were tested for association with 27.7 M genotyped or imputed single-nucleotide polymorphisms separately in the six ancestry groups. A mixed-models approach was used, which adjusted for age, sex, recruitment site, five principal components of ancestry and additional features of the sampling design. Meta-analyses were used to combine GWAS results across ancestry groups. Heritability estimates ranged from 20–53% in the six ancestry groups. The most significant association observed via meta-analysis for both phenotypes was in the region of the NAMPT gene (rs190395159; P-value = 6 × 10−10), which is involved in many biological processes including periodontal healing. Another significant association was observed for rs72626594 (P-value = 3 × 10−8) downstream of BMP7, a tooth development gene. Other associations were observed in genes lacking known or plausible roles in dental caries. In conclusion, this was the largest GWAS of dental caries, to date and was the first to target Hispanic/Latino populations. Understanding the factors influencing dental caries susceptibility may lead to improvements in prediction, prevention and disease management, which may ultimately reduce the disparities in oral health across racial, ethnic and socioeconomic strata
Recommended from our members
Protein prediction for trait mapping in diverse populations
Genetically regulated gene expression has helped elucidate the biological mechanisms underlying complex traits. Improved high-throughput technology allows similar interrogation of the genetically regulated proteome for understanding complex trait mechanisms. Here, we used the Trans-omics for Precision Medicine (TOPMed) Multi-omics pilot study, which comprises data from Multi-Ethnic Study of Atherosclerosis (MESA), to optimize genetic predictors of the plasma proteome for genetically regulated proteome-wide association studies (PWAS) in diverse populations. We built predictive models for protein abundances using data collected in TOPMed MESA, for which we have measured 1,305 proteins by a SOMAscan assay. We compared predictive models built via elastic net regression to models integrating posterior inclusion probabilities estimated by fine-mapping SNPs prior to elastic net. In order to investigate the transferability of predictive models across ancestries, we built protein prediction models in all four of the TOPMed MESA populations, African American (n = 183), Chinese (n = 71), European (n = 416), and Hispanic/Latino (n = 301), as well as in all populations combined. As expected, fine-mapping produced more significant protein prediction models, especially in African ancestries populations, potentially increasing opportunity for discovery. When we tested our TOPMed MESA models in the independent European INTERVAL study, fine-mapping improved cross-ancestries prediction for some proteins. Using GWAS summary statistics from the Population Architecture using Genomics and Epidemiology (PAGE) study, which comprises ∼50,000 Hispanic/Latinos, African Americans, Asians, Native Hawaiians, and Native Americans, we applied S-PrediXcan to perform PWAS for 28 complex traits. The most protein-trait associations were discovered, colocalized, and replicated in large independent GWAS using proteome prediction model training populations with similar ancestries to PAGE. At current training population sample sizes, performance between baseline and fine-mapped protein prediction models in PWAS was similar, highlighting the utility of elastic net. Our predictive models in diverse populations are publicly available for use in proteome mapping methods at https://doi.org/10.5281/zenodo.4837327
The PRIMED Consortium: Reducing disparities in polygenic risk assessment.
By improving disease risk prediction, polygenic risk scores (PRSs) could have a significant impact on health promotion and disease prevention. Due to the historical oversampling of populations with European ancestry for genome-wide association studies, PRSs perform less well in other, understudied populations, leading to concerns that clinical use in their current forms could widen health care disparities. The PRIMED Consortium was established to develop methods to improve the performance of PRSs in global populations and individuals of diverse genetic ancestry. To this end, PRIMED is aggregating and harmonizing multiple phenotype and genotype datasets on AnVIL, an interoperable secure cloud-based platform, to perform individual- and summary-level analyses using population and statistical genetics approaches. Study sites, the coordinating center, and representatives from the NIH work alongside other NHGRI and global consortia to achieve these goals. PRIMED is also evaluating ethical and social implications of PRS implementation and investigating the joint modeling of social determinants of health and PRS in computing disease risk. The phenotypes of interest are primarily cardiometabolic diseases and cancer, the leading causes of death and disability worldwide. Early deliverables of the consortium include methods for data sharing on AnVIL, development of a common data model to harmonize phenotype and genotype data from cohort studies as well as electronic health records, adaptation of recent guidelines for population descriptors to global cohorts, and sharing of PRS methods/tools. As a multisite collaboration, PRIMED aims to foster equity in the development and use of polygenic risk assessment
Genome-wide association study of iron traits and relation to diabetes in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL): potential genomic intersection of iron and glucose regulation?
Genetic variants contribute to normal variation of iron-related traits and may also cause clinical syndromes of iron deficiency or excess. Iron overload and deficiency can adversely affect human health. For example, elevated iron storage is associated with increased diabetes risk, although mechanisms are still being investigated. We conducted the first genome-wide association study of serum iron, total iron binding capacity (TIBC), transferrin saturation, and ferritin in a Hispanic/Latino cohort, the Hispanic Community Health Study/Study of Latinos (>12 000 participants) and also assessed the generalization of previously known loci to this population. We then evaluated whether iron-associated variants were associated with diabetes and glycemic traits. We found evidence for a novel association between TIBC and a variant near the gene for protein phosphatase 1, regulatory subunit 3B (PPP1R3B; rs4841132, β = -0.116, P = 7.44 × 10-8). The effect strengthened when iron deficient individuals were excluded (β = -0.121, P = 4.78 × 10-9). Ten of sixteen variants previously associated with iron traits generalized to HCHS/SOL, including variants at the transferrin (TF), hemochromatosis (HFE), fatty acid desaturase 2 (FADS2)/myelin regulatory factor (MYRF), transmembrane protease, serine 6 (TMPRSS6), transferrin receptor (TFR2), N-acetyltransferase 2 (arylamine N-acetyltransferase) (NAT2), ABO blood group (ABO), and GRB2 associated binding protein 3 (GAB3) loci. In examining iron variant associations with glucose homeostasis, an iron-raising variant of TMPRSS6 was associated with lower HbA1c levels (P = 8.66 × 10-10). This association was attenuated upon adjustment for iron measures. In contrast, the iron-raising allele of PPP1R3B was associated with higher levels of fasting glucose (P = 7.70 × 10-7) and fasting insulin (P = 4.79 × 10-6), but these associations were not attenuated upon adjustment for TIBC-so iron is not likely a mediator. These results provide new genetic information on iron traits and their connection with glucose homeostasis
Whole Genome Analysis of Venous Thromboembolism: the Trans-Omics for Precision Medicine Program
BACKGROUND: Risk for venous thromboembolism has a strong genetic component. Whole genome sequencing from the TOPMed program (Trans-Omics for Precision Medicine) allowed us to look for new associations, particularly rare variants missed by standard genome-wide association studies.
METHODS: The 3793 cases and 7834 controls (11.6% of cases were individuals of African, Hispanic/Latino, or Asian ancestry) were analyzed using a single variant approach and an aggregate gene-based approach using our primary filter (included only loss-of-function and missense variants predicted to be deleterious) and our secondary filter (included all missense variants).
RESULTS: Single variant analyses identified associations at 5 known loci. Aggregate gene-based analyses identified only PROC (odds ratio, 6.2 for carriers of rare variants; P=7.4×10-14) when using our primary filter. Employing our secondary variant filter led to a smaller effect size at PROC (odds ratio, 3.8; P=1.6×10-14), while excluding variants found only in rare isoforms led to a larger one (odds ratio, 7.5). Different filtering strategies improved the signal for 2 other known genes: PROS1 became significant (minimum P=1.8×10-6 with the secondary filter), while SERPINC1 did not (minimum P=4.4×10-5 with minor allele frequency \u3c0.0005). Results were largely the same when restricting the analyses to include only unprovoked cases; however, one novel gene, MS4A1, became significant (P=4.4×10-7 using all missense variants with minor allele frequency \u3c0.0005).
CONCLUSIONS: Here, we have demonstrated the importance of using multiple variant filtering strategies, as we detected additional genes when filtering variants based on their predicted deleteriousness, frequency, and presence on the most expressed isoforms. Our primary analyses did not identify new candidate loci; thus larger follow-up studies are needed to replicate the nove
Mosaic Chromosomal alterations in Blood across ancestries Using Whole-Genome Sequencing
Megabase-scale mosaic chromosomal alterations (mCAs) in blood are prognostic markers for a host of human diseases. Here, to gain a better understanding of mCA rates in genetically diverse populations, we analyzed whole-genome sequencing data from 67,390 individuals from the National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine program. We observed higher sensitivity with whole-genome sequencing data, compared with array-based data, in uncovering mCAs at low mutant cell fractions and found that individuals of European ancestry have the highest rates of autosomal mCAs and the lowest rates of chromosome X mCAs, compared with individuals of African or Hispanic ancestry. Although further studies in diverse populations will be needed to replicate our findings, we report three loci associated with loss of chromosome X, associations between autosomal mCAs and rare variants in DCPS, ADM17, PPP1R16B and TET2 and ancestry-specific variants in ATM and MPL with mCAs in cis
- …
