172 research outputs found

    A Study of the Residual 39Ar Content in Argon from Underground Sources

    Full text link
    The discovery of argon from underground sources with significantly less 39Ar than atmospheric argon was an important step in the development of direct-detection dark matter experiments using argon as the active target. We report on the design and operation of a low background detector with a single phase liquid argon target that was built to study the 39Ar content of the underground argon. Underground argon from the Kinder Morgan CO2 plant in Cortez, Colorado was determined to have less than 0.65% of the 39Ar activity in atmospheric argon.Comment: 21 pages, 10 figure

    Effects of graft pretensioning in anterior cruciate ligament reconstruction

    Get PDF
    Purpose Graft pretensioning is used in anterior cruciate ligament (ACL) reconstruction to prevent secondary slackening. Its effects on collagen fibrillar ultrastructure are not known. In this study, we hypothesized that graft pretensioning in ACL reconstruction creates ultrastructural changes detectable in scanning electron microscopy (SEM). Methods A prospective comparative study was carried out on 38 ACL reconstructions using a 4-strand semitendinosus graft. Samples were harvested intra-operatively before and after pretensioning for 30 s, 2 or 5 min. The images produced in SEM were analyzed using an original semi-quantitative «CIP» score taking into account collagen cohesion, integrity, and parallelism. Intra- and inter-tester reliability for the CIP score were tested. Results The CIP scores decreased by 3.5 (1.6) points after pretensioning (P < 0.05). Significant differences were found in the 5, 2 min and 30 s subgroups for the global CIP score. Relative decrease (Delta CIP) was significantly higher in the 2 and 5 min subgroups after pretensioning in comparison with the 30 s subgroups. Intra- and inter-tester reliability for the CIP score were 0.85 and 0.92 (P < 0.05). Conclusion Pretensioning ACL grafts resulted in alteration of the collagen fibrillar ultrastructure, detectable using SEM. These results confirm the existence of collagen ultrastructural changes after pretensioning that may be related to its duration. Level of evidence Prospective comparative study, Level II

    Stellar 36,38^{36,38}Ar(n,γ)37,39(n,\gamma)^{37,39}Ar reactions and their effect on light neutron-rich nuclide synthesis

    Full text link
    The 36^{36}Ar(n,γ)37(n,\gamma)^{37}Ar (t1/2t_{1/2} = 35 d) and 38^{38}Ar(n,γ)39(n,\gamma)^{39}Ar (269 y) reactions were studied for the first time with a quasi-Maxwellian (kT47kT \sim 47 keV) neutron flux for Maxwellian Average Cross Section (MACS) measurements at stellar energies. Gas samples were irradiated at the high-intensity Soreq applied research accelerator facility-liquid-lithium target neutron source and the 37^{37}Ar/36^{36}Ar and 39^{39}Ar/38^{38}Ar ratios in the activated samples were determined by accelerator mass spectrometry at the ATLAS facility (Argonne National Laboratory). The 37^{37}Ar activity was also measured by low-level counting at the University of Bern. Experimental MACS of 36^{36}Ar and 38^{38}Ar, corrected to the standard 30 keV thermal energy, are 1.9(3) mb and 1.3(2) mb, respectively, differing from the theoretical and evaluated values published to date by up to an order of magnitude. The neutron capture cross sections of 36,38^{36,38}Ar are relevant to the stellar nucleosynthesis of light neutron-rich nuclides; the two experimental values are shown to affect the calculated mass fraction of nuclides in the region A=36-48 during the weak ss-process. The new production cross sections have implications also for the use of 37^{37}Ar and 39^{39}Ar as environmental tracers in the atmosphere and hydrosphere.Comment: 18 pages + Supp. Mat. (13 pages) Accepted for publication in Phys. Rev. Let

    Influence of nuclear structure on sub-barrier hindrance in Ni+Ni fusion

    Get PDF
    Fusion-evaporation cross sections for 64^{64}Ni+64^{64}Ni have been measured down to the 10 nb level. For fusion between two open-shell nuclei, this is the first observation of a maximum in the SS-factor, which signals a strong sub-barrier hindrance. A comparison with the 58^{58}Ni+58^{58}Ni, 58^{58}Ni+60^{60}Ni, and 58^{58}Ni+64^{64}Ni systems indicates a strong dependence of the energy where the hindrance occurs on the stiffness of the interacting nuclei.Comment: Submitted to Phys. Rev. Lett. 4 pages, 3 figure

    Hindrance of Heavy-ion Fusion at Extreme Sub-Barrier Energies in Open-shell Colliding Systems

    Full text link
    The excitation function for the fusion-evaporation reaction 64Ni+100Mo has been measured down to a cross-section of ~5 nb. Extensive coupled-channels calculations have been performed, which cannot reproduce the steep fall-off of the excitation function at extreme sub-barrier energies. Thus, this system exhibits a hindrance for fusion, a phenomenon that has been discovered only recently. In the S-factor representation introduced to quantify the hindrance, a maximum is observed at E_s=120.6 MeV, which corresponds to 90% of the reference energy E_s^ref, a value expected from systematics of closed-shell systems. A systematic analysis of Ni-induced fusion reactions leading to compound nuclei with mass A=100-200 is presented in order to explore a possible dependence of the fusion hindrance on nuclear structure.Comment: 10 pages, 9 figures, Submitted to Phys. Rev.

    Multi-layer coating development for XEUS

    Get PDF
    Graded depth multi-layer coatings have the potential to optimise the performance of X-ray reflective surfaces for improved energy response. A study of deposition techniques on silicon substrates representative of the XEUS High Performance Pore Optics (HPO) technology has been carried out. Measurements at synchrotron radiation facilities have been used to confirm the excellent performance improvements achievable with Mo/Si and W/Si multilayers. Future activities that will be necessary to implement such coatings in the HPO assembly sequence are highlighted. Further coating developments that may allow an optimisation of the XEUS effective area in light of potential changes to science requirements and telescope configurations are also identified. Finally an initial measurement of effects of radiation damage within the multilayers is reported

    A shorter \u3csup\u3e146\u3c/sup\u3eSm half-life measured and implications for \u3csup\u3e146\u3c/sup\u3eSm-\u3csup\u3e142\u3c/sup\u3eNd chronology in the solar system

    Get PDF
    The extinct p-process nuclide 146Sm serves as an astrophysical and geochemical chronometer through measurements of isotopic anomalies of its α-decay daughter 142Nd. Based on analyses of 146Sm/147Sm α-activity and atom ratios, we determined the half-life of 146Sm to be 68 ± 7 (1σ) million years, which is shorter than the currently used value of 103 ± 5 million years. This half-life value implies a higher initial 146Sm abundance in the early solar system, (146Sm/144Sm)0 = 0.0094 ± 0.0005 (2σ), than previously estimated. Terrestrial, lunar, and martian planetary silicate mantle differentiation events dated with 146Sm-142Nd converge to a shorter time span and in general to earlier times, due to the combined effect of the new 146Sm half-life and (146Sm/144Sm)0 values
    corecore