8,041 research outputs found
Compassion, power and organization
In this paper, we analyse the significance of compassion as an emotion in its relationship to various manifestations of power within the organisational context. We critique those theories of compassion that assume that compassion in organsational contexts is motivated only by a noble intent. The paper draws on a study of organisational responses to the flood that devastated the City of Brisbane Australia on the morning of 11 January 2011. We use a framework of 'circuits of power' to provide a triple focus on interpersonal, organisational and societal uses of power together with a model of coercive, instrumental and normative organisational power. We present our findings in a framework constructed by overlapping these frameworks. The unique contribution of this paper is to provide a conceptualisation of organisational compassion enmeshed with various modes of power exercised in and by organisations. © 2013 © 2013 Taylor & Francis
The futures of power
Some may recall, or have read about, those heady days when history allegedly ended, as the Berlin Wall collapsed(3). When the wall came down it seemed to may observers as if, with the end of communism at least in Europe the only threat to existing democratic political power was vanquished. Liberal, plural democracy, the open society and open organizations seemed to stretch as a vista into a future full of promise offering peace in our time, with all its assumed dividends, and the triumph neither of the will nor the state but of decent, ordinary democracy. Surely the chance to build a better world of organizations was imminent
Characterization of the Noise in Secondary Ion Mass Spectrometry Depth Profiles
The noise in the depth profiles of secondary ion mass spectrometry (SIMS) is
studied using different samples under various experimental conditions. Despite
the noise contributions from various parts of the dynamic SIMS process, its
overall character agrees very well with the Poissonian rather than the Gaussian
distribution in all circumstances. The Poissonian relation between the measured
mean-square error (MSE) and mean can be used to describe our data in the range
of four orders. The departure from this relation at high counts is analyzed and
found to be due to the saturation of the channeltron used. Once saturated, the
detector was found to exhibit hysteresis between rising and falling input flux
and output counts.Comment: 14 pages, 4 postscript figures, to appear on J. Appl. Phy
The dissolution and solid-state behaviours of coground ibuprofen–glucosamine HCl
The cogrinding technique is one of most effective methods for improving the dissolution of poorly water-soluble drugs and it is superior to other approaches from an economical as well as an environmental standpoint, as the technique does not require any toxic organic solvents. Present work explores the role of d-glucosamine HCl (GL) as a potential excipient to improve dissolution of a low melting point drug, ibuprofen (Ibu), using physical mixtures and coground formulations. The dissolution of the poorly soluble drug has been improved by changing the ratio of Ibu:GL and also grinding time. The results also showed that although GL can enhance the solubility of Ibu, it also reduces pH around the Ibu particles which led to poor dissolution performance when the concentration of GL is high. The effect of GL on the solubility of Ibu could be misleading if the pH of the final solution was not measured. Grinding reduced the particle size of GL significantly but in case of Ibu it was less effective. Solid state analysis (XRPD, DSC, and FT-IR) showed that ibuprofen is stable under grinding conditions, but the presence of high concentration of GL in samples subjected to high grinding times caused changes in FT-IR spectrum of Ibu which could be due to intermolecular hydrogen bond or esterification between the carboxylic acid group in the ibuprofen and hydroxyl group in the GL
Scalable Peer-to-Peer Streaming for Live Entertainment Content
We present a system for streaming live entertainment content over the Internet originating from a single source to a scalable number of consumers without resorting to centralized or provider-provisioned resources. The system creates a peer-to-peer overlay network, which attempts to optimize use of existing capacity to ensure quality of service, delivering low startup delay and lag in playout of the live content. There are three main aspects of our solution: first, a swarming mechanism that constructs an overlay topology for minimizing propagation delays from the source to end consumers; second, a distributed overlay anycast system that uses a location-based search algorithm for peers to quickly find the closest peers in a given stream; and finally, a novel incentive mechanism that encourages peers to donate capacity even when the user is not actively consuming content
Emulsification in binary liquids containing colloidal particles: a structure-factor analysis
We present a quantitative confocal-microscopy study of the transient and
final microstructure of particle-stabilised emulsions formed via demixing in a
binary liquid. To this end, we have developed an image-analysis method that
relies on structure factors obtained from discrete Fourier transforms of
individual frames in confocal image sequences. Radially averaging the squared
modulus of these Fourier transforms before peak fitting allows extraction of
dominant length scales over the entire temperature range of the quench. Our
procedure even yields information just after droplet nucleation, when the
(fluorescence) contrast between the two separating phases is scarcely
discernable in the images. We find that our emulsions are stabilised on
experimental time scales by interfacial particles and that they are likely to
have bimodal droplet-size distributions. We attribute the latter to coalescence
together with creaming being the main coarsening mechanism during the late
stages of emulsification and we support this claim with (direct)
confocal-microscopy observations. In addition, our results imply that the
observed droplets emerge from particle-promoted nucleation, possibly followed
by a free-growth regime. Finally, we argue that creaming strongly affects
droplet growth during the early stages of emulsification. Future investigations
could clarify the link between quench conditions and resulting microstructure,
paving the way for tailor-made particle-stabilised emulsions from binary
liquids.Comment: http://iopscience.iop.org/0953-8984/22/45/455102
Colloidal templating at a cholesteric - oil interface: Assembly guided by an array of disclination lines
We simulate colloids (radius m) trapped at the interface between
a cholesteric liquid crystal and an immiscible oil, at which the helical order
(pitch p) in the bulk conflicts with the orientation induced at the interface,
stabilizing an ordered array of disclinations. For weak anchoring strength W of
the director field at the colloidal surface, this creates a template, favoring
particle positions eitheron top of or midway between defect lines, depending on
. For small , optical microscopy experiments confirm this
picture, but for larger no templating is seen. This may stem from the
emergence at moderate W of a rugged energy landscape associated with defect
reconnections.Comment: 5 pages, 4 figure
- …
