31 research outputs found

    Class II Phosphoinositide 3-Kinases Contribute to Endothelial Cells Morphogenesis

    Get PDF
    PMCID: PMC3539993This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    A PRELIMINARY APPROACH TO ASSESS PEACH FRUIT TEXTURE BY TIME-RESOLVED SPECTROSCOPY (TRS)

    Get PDF
    Most fruits can be modeled for their internal composition as a diffusive medium at visible and near-infrared wavelengths. The low absorption in this spectral range allows exploiting VIS/NIR spectroscopic techniques to probe non-destructively the internal food properties. Time-resolved reflectance spectroscopy (TRS), in particular, allows the separate, but simultaneous estimation of absorption and scattering coefficients. Absorption and scattering properties give very different information about the medium investigated. The possibility of applying TRS to assess the texture type of peach fruit was tested. To this purpose, an instrument for TRS developed at Politecnico di Milano-Department of Physics, was exploited. At least two cultivars for each peach flesh phenotype (melting, non-melting, stony hard and slow melting) and a total of 30 fruits for each cultivar were analyzed over the spectral range 540-940 nm. The absorption spectra exhibit high values around 550 nm due to the anthocyanins' absorption features. Furthermore, an absorption peak is visible at 670 nm, linked to the chlorophyll a content and then gives an idea about the fruit ripeness (a high chlorophyll content corresponds to a less ripe fruit). With the exception of the cultivar 'Iride', particularly rich in anthocyanins, and 'Ghiaccio', anthocyaninless, the absorption spectra of all of the samples were similar. Concerning the scattering properties of peaches, by considering the equivalent density and the scatter power Mie parameters, it was possible to discriminate between three out of four texture types (melting, slow melting and stony hard). Further improvements may lead to a full discrimination in the future

    Integrative genomics approaches validate PpYUC11-like as candidate gene for the stony hard trait in peach (P. persica L. Batsch)

    Get PDF
    Texture is one of the most important fruit quality attributes. In peach, stony hard (SH) is a recessive monogenic trait (hd/hd) that confers exceptionally prolonged firm flesh to fully ripe fruit. Previous studies have shown that the SH mutation affects the fruit ability to synthesize appropriate amounts of indol-3-acetic acid (IAA), which orchestrates the ripening processes through the activation of system 2 ethylene pathway. Allelic variation in a TC microsatellite located within the first intron of PpYUC11-like (a YUCCA-like auxin-biosynthesis gene) has been recently proposed as the causal mutation of the SH phenotype

    A novel inhibitor of the PI3K/Akt pathway based on the structure of inositol 1,3,4,5,6-pentakisphosphate

    Get PDF
    Background: Owing to its role in cancer, the phosphoinositide 3-kinase (PI3K)/Akt pathway is an attractive target for therapeutic intervention. We previously reported that the inhibition of Akt by inositol 1,3,4,5,6- pentakisphosphate (InsP5) results in anti-tumour properties. To further develop this compound we modified its structure to obtain more potent inhibitors of the PI3K/Akt pathway.Methods: Cell proliferation/survival was determined by cell counting, sulphorhodamine or acridine orange/ethidium bromide assay; Akt activation was determined by western blot analysis. In vivo effect of compounds was tested on PC3 xenografts, whereas in vitro activity on kinases was determined by SelectScreen Kinase Profiling Service.Results: The derivative 2-O-benzyl-myo-inositol 1,3,4,5,6-pentakisphosphate (2-O-Bn-InsP5) is active towards cancer types resistant to InsP5 in vitro and in vivo. 2-O-Bn-InsP5 possesses higher pro-apoptotic activity than InsP 5 in sensitive cells and enhances the effect of anti-cancer compounds. 2-O-Bn-InsP5 specifically inhibits 3-phosphoinositide- dependent protein kinase 1 (PDK1) in vitro (IC 50 in the low nanomolar range) and the PDK1-dependent phosphorylation of Akt in cell lines and excised tumours. It is interesting to note that 2-O-Bn-InsP5 also inhibits the mammalian target of rapamycin (mTOR) in vitro.Conclusions: InsP5 and 2-O-Bn-InsP5 may represent lead compounds to develop novel inhibitors of the PI3K/Akt pathway (including potential dual PDK1/mTOR inhibitors) and novel potential anti-cancer drugs

    Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lignification of the fruit endocarp layer occurs in many angiosperms and plays a critical role in seed protection and dispersal. This process has been extensively studied with relationship to pod shatter or dehiscence in <it>Arabidopsis</it>. Dehiscence is controlled by a set of transcription factors that define the fruit tissue layers and whether or not they lignify. In contrast, relatively little is known about similar processes in other plants such as stone fruits which contain an extremely hard lignified endocarp or stone surrounding a single seed.</p> <p>Results</p> <p>Here we show that lignin deposition in peach initiates near the blossom end within the endocarp layer and proceeds in a distinct spatial-temporal pattern. Microarray studies using a developmental series from young fruits identified a sharp and transient induction of phenylpropanoid, lignin and flavonoid pathway genes concurrent with lignification and subsequent stone hardening. Quantitative polymerase chain reaction studies revealed that specific phenylpropanoid (phenylalanine ammonia-lyase and cinnamate 4-hydroxylase) and lignin (caffeoyl-CoA O-methyltransferase, peroxidase and laccase) pathway genes were induced in the endocarp layer over a 10 day time period, while two lignin genes (<it>p-</it>coumarate 3-hydroxylase and cinnamoyl CoA reductase) were co-regulated with flavonoid pathway genes (chalcone synthase, dihydroflavanol 4-reductase, leucoanthocyanidin dioxygen-ase and flavanone-3-hydrosylase) which were mesocarp and exocarp specific. Analysis of other fruit development expression studies revealed that flavonoid pathway induction is conserved in the related Rosaceae species apple while lignin pathway induction is not. The transcription factor expression of peach genes homologous to known endocarp determinant genes in <it>Arabidopsis </it>including <it>SHATTERPROOF</it>, <it>SEEDSTCK </it>and <it>NAC SECONDARY WALL THICENING PROMOTING FACTOR 1 </it>were found to be specifically expressed in the endocarp while the negative regulator <it>FRUITFU</it>L predominated in exocarp and mesocarp.</p> <p>Conclusions</p> <p>Collectively, the data suggests, first, that the process of endocarp determination and differentiation in peach and <it>Arabidopsis </it>share common regulators and, secondly, reveals a previously unknown coordination of competing lignin and flavonoid biosynthetic pathways during early fruit development.</p

    Morphological and physiological behaviour of sweet cherry 'somaclone' HS plants in field

    No full text
    The somaclonal variant HS (HS), regenerated from Prunus avium `Hedelfinger\u2019 (H) leaf explants, had previously been molecularly and physiologically characterized both in vitro and in early ex vitro condition showing reduced apical dominance. Somaclone HS, here assessed for several morphological and physiological field performances showed reduced vegetative vigour as determined by trunk circumference and tree height nevertheless natural architecture of the tree was preserved. HS canopy was less crowded compared to H as leaves were shorter with a shorter petiole, they were better spaced out as indicated by internodes length and they had a significantly thinner cuticle and wax layer compared to that found on H leaves surface. Leaf histological analysis also evidenced that HS had thicker mesophyll and palisade the latter composed of more than one layer which, together with increased stomatal density, are distinguishing signs of extensively sun exposed leaves. HS showed a reduction in leaf chlorophyll b and \u3b2-carotene content. On the other hands no significant differences were found between the two genotypes in terms of net photosynthesis, intercellular CO2 concentration, leaf transpiration and water use efficiency. HS flowered one year later than H and fertility parameters such as floral buds and number of flowers per bud were reduced. In consideration of the fact that the large size of trees has contributed to make P. avium commercial cultivars unpopular with modern orchardists, HS could be used as either germplasm in breeding programs aiming to reduce tree vigour or a rootstock

    Rigenerazione e trasformazione del pesco : risposte varietali

    No full text
    Shoot regeneration ability and competence to A. tumefaciens genetic transformation of four peach cultivars were investigated. A significant role of both genotype and culture condition was found

    The Di2/pet variant in PETALOSA gene underlies a major heat requirement-related QTL for blooming date in peach (P. persica L. Batsch)

    No full text
    Environmental adaptation of deciduous fruit trees largely depends on their ability to synchronize growth and development with seasonal climate change. Winter dormancy of flower buds is a key process to prevent frost damage and ensure reproductive success. Temperature is a crucial environmental stimulus largely influencing the timing of flowering, only occurring after fulfillment of certain temperature requirements. Nevertheless, genetic variation affecting chilling or heat-dependent dormancy release still remains largely unknown. In this study, a major QTL able to delay blooming date in peach by increasing heat-requirement was finely mapped in three segregating progenies, revealing a strict association with a genetic variant (petDEL) in a PETALOSA gene, previously shown to also affect flower morphology. Analysis of segregating genome-edited tobacco plants provided further evidence of the potential ability of PET-variations to delay flowering time. Potential applications of the petDEL variant for improving phenological traits in peach are discussed
    corecore