11,035 research outputs found

    Zero bias conductance peak in Majorana wires made of semiconductor-superconductor hybrid structures

    Full text link
    Motivated by a recent experimental report[1] claiming the likely observation of the Majorana mode in a semiconductor-superconductor hybrid structure[2,3,4,5], we study theoretically the dependence of the zero bias conductance peak associated with the zero-energy Majorana mode in the topological superconducting phase as a function of temperature, tunnel barrier potential, and a magnetic field tilted from the direction of the wire for realistic wires of finite lengths. We find that higher temperatures and tunnel barriers as well as a large magnetic field in the direction transverse to the wire length could very strongly suppress the zero-bias conductance peak as observed in Ref.[1]. We also show that a strong magnetic field along the wire could eventually lead to the splitting of the zero bias peak into a doublet with the doublet energy splitting oscillating as a function of increasing magnetic field. Our results based on the standard theory of topological superconductivity in a semiconductor hybrid structure in the presence of proximity-induced superconductivity, spin-orbit coupling, and Zeeman splitting show that the recently reported experimental data are generally consistent with the existing theory that led to the predictions for the existence of the Majorana modes in the semiconductor hybrid structures in spite of some apparent anomalies in the experimental observations at first sight. We also make several concrete new predictions for future observations regarding Majorana splitting in finite wires used in the experiments.Comment: 5 pages, 6 figures: revised submitted versio

    Microscopic Approach to Shear Viscosities in Superfluid Gases: From BCS to BEC

    Full text link
    We compute the shear viscosity, η\eta, at general temperatures TT, in a BCS-BEC crossover scheme which is demonstrably consistent with conservation laws. The study of η\eta is important because it constrains microscopic theories by revealing the excitation spectra. The onset of a normal state pairing gap and the contribution from pair degrees of freedom imply that η\eta at low TT becomes small, rather than exhibiting the upturn predicted by most others. Using the local density approximation, we find quite reasonable agreement with just-published experiments.Comment: 4 pages, 2 figure

    Comment on "Density and Spin response of a strongly-interacting Fermi gas in the attractive and quasi-repulsive regime"

    Get PDF
    This is a comment on Phys. Rev. Lett. 108, 080401 (2012) by Palestini et al. We pointed out that the diagrammatic method in that article violates gauge invariance. As a consequence, there will a Meissner effect in the normal phase and the contribution from collective modes are not mentioned in the symmetry-broken phase.Comment: 1 page, no figur

    A New Experiment to Study Hyperon CP Violation and the Charmonium System

    Full text link
    Fermilab operates the world's most intense antiproton source, now exclusively dedicated to serving the needs of the Tevatron Collider. The anticipated 2009 shutdown of the Tevatron presents the opportunity for a world-leading low- and medium-energy antiproton program. We summarize the status of the Fermilab antiproton facility and review physics topics for which a future experiment could make the world's best measurements.Comment: 16 pages, 3 figures, to appear in Proceedings of CTP symposium on Supersymmetry at LHC: Theoretical and Experimental Perspectives, The British University in Egypt, Cairo, Egypt, 11-14 March 200

    Enzymatic Cross-Linking of Dynamic Thiol-Norbornene Click Hydrogels

    Get PDF
    Enzyme-mediated in situ forming hydrogels are attractive for many biomedical applications because gelation afforded by enzymatic reactions can be readily controlled not only by tuning macromer compositions, but also by adjusting enzyme kinetics. For example, horseradish peroxidase (HRP) has been used extensively for in situ cross-linking of macromers containing hydroxyl-phenol groups. The use of HRP to initiate thiol-allylether polymerization has also been reported, yet no prior study has demonstrated enzymatic initiation of thiol-norbornene gelation. In this study, we discovered that HRP can generate the thiyl radicals needed for initiating thiol-norbornene hydrogelation, which has only been demonstrated previously using photopolymerization. Enzymatic thiol-norbornene gelation not only overcomes light attenuation issue commonly observed in photopolymerized hydrogels, but also preserves modularity of the cross-linking. In particular, we prepared modular hydrogels from two sets of norbornene-modified macromers, 8-arm poly(ethylene glycol)-norbornene (PEG8NB) and gelatin-norbornene (GelNB). Bis-cysteine-containing peptides or PEG-tetra-thiol (PEG4SH) was used as a cross-linker for forming enzymatically and orthogonally polymerized hydrogel. For HRP-initiated PEG-peptide hydrogel cross-linking, gelation efficiency was significantly improved via adding tyrosine residues on the peptide cross-linkers. Interestingly, these additional tyrosine residues did not form permanent dityrosine cross-links following HRP-induced gelation. As a result, they remained available for tyrosinase-mediated secondary cross-linking, which dynamically increased hydrogel stiffness. In addition to material characterizations, we also found that both PEG- and gelatin-based hydrogels exhibited excellent cytocompatibility for dynamic 3D cell culture. The enzymatic thiol-norbornene gelation scheme presented here offers a new cross-linking mechanism for preparing modularly and dynamically cross-linked hydrogels
    • …
    corecore