20 research outputs found

    Exploiting Anti-monotonicity of Multi-label Evaluation Measures for Inducing Multi-label Rules

    Full text link
    Exploiting dependencies between labels is considered to be crucial for multi-label classification. Rules are able to expose label dependencies such as implications, subsumptions or exclusions in a human-comprehensible and interpretable manner. However, the induction of rules with multiple labels in the head is particularly challenging, as the number of label combinations which must be taken into account for each rule grows exponentially with the number of available labels. To overcome this limitation, algorithms for exhaustive rule mining typically use properties such as anti-monotonicity or decomposability in order to prune the search space. In the present paper, we examine whether commonly used multi-label evaluation metrics satisfy these properties and therefore are suited to prune the search space for multi-label heads.Comment: Preprint version. To appear in: Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) 2018. See http://www.ke.tu-darmstadt.de/bibtex/publications/show/3074 for further information. arXiv admin note: text overlap with arXiv:1812.0005

    Nuevas arquitecturas hardware de procesamiento de alto rendimiento para aprendizaje profundo

    Get PDF
    El diseño y fabricación de hardware es costoso, tanto en tiempo como en inversión económica, razón por la que los circuitos integrados se fabrican siempre en gran volumen, para aprovechar la economía de escala. Por esa razón la mayoría de procesadores fabricados son de propósito general, ampliando así su campo de aplicaciones. En los últimos años, sin embargo, cada vez se fabrican más procesadores para aplicaciones específicas, entre ellos aquellos destinados a acelerar el trabajo con redes neuronales profundas. Este artículo introduce la necesidad de este tipo de hardware especializado, describiendo su finalidad, funcionamiento e implementaciones actuales.The design and manufacture of hardware is expensive, both in time and in economic investment, which is why integrated circuits are always manufactured in large volume, to take advantage of economies of scale. For this reason, the majority of processors manufactured are general purpose, thus expanding its range of applications. In recent years, however, more and more processors are being manufactured for specific applications, including those aimed at accelerating work with deep neural networks. This article introduces the need for this type of specialized hardware, describing its purpose, operation and current implementations.Universidad de Granada: Departamento de Arquitectura y Tecnología de Computadore

    Learning Interpretable Rules for Multi-label Classification

    Full text link
    Multi-label classification (MLC) is a supervised learning problem in which, contrary to standard multiclass classification, an instance can be associated with several class labels simultaneously. In this chapter, we advocate a rule-based approach to multi-label classification. Rule learning algorithms are often employed when one is not only interested in accurate predictions, but also requires an interpretable theory that can be understood, analyzed, and qualitatively evaluated by domain experts. Ideally, by revealing patterns and regularities contained in the data, a rule-based theory yields new insights in the application domain. Recently, several authors have started to investigate how rule-based models can be used for modeling multi-label data. Discussing this task in detail, we highlight some of the problems that make rule learning considerably more challenging for MLC than for conventional classification. While mainly focusing on our own previous work, we also provide a short overview of related work in this area.Comment: Preprint version. To appear in: Explainable and Interpretable Models in Computer Vision and Machine Learning. The Springer Series on Challenges in Machine Learning. Springer (2018). See http://www.ke.tu-darmstadt.de/bibtex/publications/show/3077 for further informatio

    Saliency Detection in Hyperspectral Images Using Autoencoder-Based Data Reconstruction

    No full text
    Saliency detection extracts objects attractive to a human vision system from an image. Although saliency detection methodologies were originally investigated on RGB color images, recent developments in imaging technologies have aroused the interest in saliency detection methodologies for data captured with high spectral resolution using multispectral and hyperspectral imaging (MSI/HSI) sensors. In this paper, we propose a saliency detection methodology that elaborates HSI data reconstructed through an autoencoder architecture. It resorts to (spectral-spatial) distance measures to quantify the salience degree in the data represented through the autoencoder. Finally, it performs a clustering stage in order to separate the salient information from the background. The effectiveness of the proposed methodology is evaluated with benchmark HSI and MSI data
    corecore